文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于通路的癌症转录组解析膀胱癌分类中的高分辨率内在异质性。

Pathway-based cancer transcriptome deciphers a high-resolution intrinsic heterogeneity within bladder cancer classification.

作者信息

Wang Zhan, Zhou Zhaokai, Yang Shuai, Li Zhengrui, Shi Run, Wang Ruizhi, Liu Kui, Tang Xiaojuan, Li Qi

机构信息

Department of Urology, The First Affiliated Hospital of Zhengzhou University, Henan, 450052, China.

Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.

出版信息

J Transl Med. 2025 Jun 17;23(1):666. doi: 10.1186/s12967-025-06682-1.


DOI:10.1186/s12967-025-06682-1
PMID:40528211
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12175387/
Abstract

BACKGROUND: The heterogeneity of bladder cancer (BLCA) is affected by its inherent transcriptional properties and tumor microenvironment (TME). Stromal transcriptional components in the TME significantly influence the transcriptional classification of BLCA, and the intrinsic biological transcriptional characteristics of cancer cells may be obscured by the dominant, lineage-dependent transcriptional components of stromal origin. This study aimed to explore the degree and mechanisms by which cancer-intrinsic gene expression profiles contribute to the classification and prognosis of BLCA patients. MATERIALS AND METHODS: In this study, BLCA single-cell transcriptome data from GSE135337 were used to identify pure tumor cells in BLCA and explore the different intrinsic heterogeneous cell subgroups of BLCA through pathway-based cancer transcriptome classification. Additionally, BLCA intrinsic subtypes were uncovered in the TCGA BLCA dataset based on the characteristic genes of the subgroups. Lastly, various machine learning algorithms were applied to identify novel potential targets of BLCA, following which their pro-tumorigenic effects were experimentally verified. RESULTS: Four BLCA intrinsic subtypes with different molecular, functional and phenotypic characteristics were successfully identified. Specifically, MA and DP subtypes demonstrated malignant phenotypes, accompanied by unfavorable clinical prognoses, limited involvement in cell death pathways, marked cell proliferation, and diminished immune activation. Notably, MA subtype exhibited the most favorable response to immunotherapy, potentially attributable to its distinctive tumor immune microenvironment. DSM subtype represented an immune-rich subtype with the optimal prognosis, characterized by abundant immune cells, high levels of co-stimulatory, co-inhibitory, major histocompatibility complex molecules, and a potential for immunotherapy response. On the other hand, HM subtype was associated with a high level of autophagy and necrosis and an "immune-hot" TIME. Furthermore, BLCA intrinsic subtypes effectively classified independent sets of BLCAs, with limited overlap with existing transcriptional classifications and showcasing unprecedented predictive and prognostic value. Finally, the DP subtype, associated with the worst prognosis, was further analyzed, leading to the identification of three potential target genes (DAD1, CYP1B1, and REXO2) significantly associated with metabolic disorders, as well as BLCA stage and grade. CONCLUSION: This study identified a promising platform for understanding intrinsic tumor heterogeneity, which could offer new insights into the intricate molecular mechanisms of BLCA. Targeted therapy against BEXO2 may improve the prognosis of BLCA patients by regulating mitochondria-related metabolic disorders.

摘要

背景:膀胱癌(BLCA)的异质性受其固有转录特性和肿瘤微环境(TME)影响。TME中的基质转录成分显著影响BLCA的转录分类,癌细胞的内在生物学转录特征可能被基质来源的主导性、谱系依赖性转录成分所掩盖。本研究旨在探讨癌症内在基因表达谱对BLCA患者分类和预后的影响程度及机制。 材料与方法:在本研究中,使用来自GSE135337的BLCA单细胞转录组数据来识别BLCA中的纯肿瘤细胞,并通过基于通路的癌症转录组分类探索BLCA不同的内在异质细胞亚群。此外,基于亚群的特征基因在TCGA BLCA数据集中揭示BLCA内在亚型。最后,应用各种机器学习算法识别BLCA的新型潜在靶点,随后通过实验验证其促肿瘤作用。 结果:成功识别出四种具有不同分子、功能和表型特征的BLCA内在亚型。具体而言,MA和DP亚型表现出恶性表型,伴有不良临床预后,对细胞死亡途径的参与有限,细胞增殖明显,免疫激活减弱。值得注意的是,MA亚型对免疫疗法表现出最有利的反应,这可能归因于其独特的肿瘤免疫微环境。DSM亚型代表免疫丰富亚型,预后最佳,其特征是免疫细胞丰富,共刺激、共抑制、主要组织相容性复合体分子水平高,且有免疫治疗反应的潜力。另一方面,HM亚型与高水平的自噬和坏死以及“免疫热”肿瘤微环境相关。此外,BLCA内在亚型有效地对独立的BLCA集进行了分类,与现有转录分类的重叠有限,并展示出前所未有的预测和预后价值。最后,对预后最差的DP亚型进行了进一步分析,从而确定了三个与代谢紊乱以及BLCA分期和分级显著相关的潜在靶基因(DAD1、CYP1B1和REXO2)。 结论:本研究确定了一个有前景的平台,用于理解肿瘤内在异质性,这可为深入了解BLCA复杂的分子机制提供新见解。针对BEXO2的靶向治疗可能通过调节线粒体相关代谢紊乱来改善BLCA患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2931/12175387/65df7e202be4/12967_2025_6682_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2931/12175387/f32710e7990a/12967_2025_6682_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2931/12175387/2d478a5f77b6/12967_2025_6682_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2931/12175387/b836087e66ed/12967_2025_6682_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2931/12175387/3e3d042d5088/12967_2025_6682_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2931/12175387/d2e259f26431/12967_2025_6682_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2931/12175387/20aae25ba51b/12967_2025_6682_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2931/12175387/65df7e202be4/12967_2025_6682_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2931/12175387/f32710e7990a/12967_2025_6682_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2931/12175387/2d478a5f77b6/12967_2025_6682_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2931/12175387/b836087e66ed/12967_2025_6682_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2931/12175387/3e3d042d5088/12967_2025_6682_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2931/12175387/d2e259f26431/12967_2025_6682_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2931/12175387/20aae25ba51b/12967_2025_6682_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2931/12175387/65df7e202be4/12967_2025_6682_Fig7_HTML.jpg

相似文献

[1]
Pathway-based cancer transcriptome deciphers a high-resolution intrinsic heterogeneity within bladder cancer classification.

J Transl Med. 2025-6-17

[2]
Molecular feature-based classification of retroperitoneal liposarcoma: a prospective cohort study.

Elife. 2025-5-23

[3]
Comprehensive pan-cancer analysis reveals NTN1 as an immune infiltrate risk factor and its potential prognostic value in SKCM.

Sci Rep. 2025-1-25

[4]
Prognostic analysis of bladder cancer with neddylation-related genes.

Hereditas. 2025-6-16

[5]
Integrative analysis of bulk and single-cell gene expression profiles to identify bone marrow mesenchymal cell heterogeneity and prognostic significance in multiple myeloma.

J Transl Med. 2025-6-16

[6]
Integration of Machine Learning and Experimental Validation to Identify Anoikis-Related Prognostic Signature for Predicting the Breast Cancer Tumor Microenvironment and Treatment Response.

Genes (Basel). 2024-11-12

[7]
Machine Learning Characterization of Immunometabolism in the Tumor Microenvironment and Immunotherapy Responses in Bladder Cancer.

J Immunother. 2025-6-18

[8]
Identification of a novel prognostic gene signature in pleural mesothelioma: a study based on The Cancer Genome Atlas database and experimental validation.

Transl Cancer Res. 2025-5-30

[9]
Integrated pan-cancer analysis of ADM's role in prognosis, immune modulation and resistance.

Front Immunol. 2025-6-3

[10]
The impact of de novo lipogenesis on predicting survival and clinical therapy: an exploration based on a multigene prognostic model in hepatocellular carcinoma.

J Transl Med. 2025-6-18

本文引用的文献

[1]
Integrated analysis of bulk and single-cell RNA-seq data reveals cell differentiation-related subtypes and a scoring system in bladder cancer.

J Cell Mol Med. 2024-10

[2]
A Contrastive-Learning-Based Deep Neural Network for Cancer Subtyping by Integrating Multi-Omics Data.

Interdiscip Sci. 2024-12

[3]
Nucleocytoplasmic β-catenin expression contributes to neuroendocrine differentiation in muscle invasive bladder cancer.

Cancer Sci. 2024-9

[4]
Predicting bladder cancer survival with high accuracy: insights from MAPK pathway-related genes.

Sci Rep. 2024-5-7

[5]
Identifying Diffuse Glioma Subtypes Based on Pathway Enrichment Evaluation.

Interdiscip Sci. 2024-9

[6]
REXO2 up-regulation is positively correlated with poor prognosis and tumor immune infiltration in hepatocellular carcinoma.

Int Immunopharmacol. 2024-3-30

[7]
Targeting DAD1 gene with CRISPR-Cas9 system transmucosally delivered by fluorinated polylysine nanoparticles for bladder cancer intravesical gene therapy.

Theranostics. 2024

[8]
Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies.

Signal Transduct Target Ther. 2023-12-18

[9]
Combining Global-Constrained Concept Factorization and a Regularized Gaussian Graphical Model for Clustering Single-Cell RNA-seq Data.

Interdiscip Sci. 2024-3

[10]
Identification and Analysis of Neutrophil Extracellular Trap-Related Genes in Osteoarthritis by Bioinformatics and Experimental Verification.

J Inflamm Res. 2023-8-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索