Wu Sichu, Xue Yuan, Hang Yaming, Xie Ya, Zhang Pei, Liang Minlu, Zhong Yuan, Wang Chun
Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA.
Ann Med. 2025 Dec;57(1):2520394. doi: 10.1080/07853890.2025.2520394. Epub 2025 Jun 17.
Nonsuicidal self-injury (NSSI) involves the intentional destruction of one's own body tissues without suicidal intent. Prior research has shown that individuals with NSSI exhibit abnormal pain perception; however, the pain-processing neural circuits underlying NSSI remain poorly understood. This study leverages graph neural networks to predict NSSI risk and examine the learned connectivity of neural underpinnings using multimodal data.
Resting-state functional MRI and diffusion tensor imaging were collected from 50 patients with NSSI, 79 healthy controls (HC), and 44 patients with mental disorder who did not engage in NSSI as disease controls (DC). We constructed pain-related brain networks for each participant. An interpretable graph attention networks (GAT) model was developed, considering demographic factors, to predict NSSI risk and highlight NSSI-specific connectivity using learned attention matrices.
The proposed GAT model based on imaging data achieved an accuracy of 80%, and increased to 88% when self-reported pain scales were incorporated alongside imaging data in distinguishing patients with NSSI from HC. It highlighted amygdala-parahippocampus and inferior frontal gyrus (IFG)-insula connectivity as pivotal in NSSI-related pain processing. After incorporating imaging data of DC, the model's accuracy reached 74%, underscoring consistent neural connectivity patterns. The GAT model demonstrates high predictive accuracy for NSSI, enhanced by including self-reported pain scales.
Our proposed GAT model underscores the significance in the functional integration of limbic regions, paralimbic regions and IFG in NSSI pain processing. Our findings suggest altered pain processing as a key mechanism in NSSI, providing insights for potential neural modulation intervention strategies.
非自杀性自伤(NSSI)是指在没有自杀意图的情况下故意破坏自己的身体组织。先前的研究表明,有NSSI行为的个体表现出异常的疼痛感知;然而,NSSI背后的疼痛处理神经回路仍知之甚少。本研究利用图神经网络来预测NSSI风险,并使用多模态数据检查所学习到的神经基础的连通性。
收集了50名NSSI患者、79名健康对照者(HC)和44名未参与NSSI的精神障碍患者(作为疾病对照,DC)的静息态功能磁共振成像和扩散张量成像数据。我们为每个参与者构建了与疼痛相关的脑网络。开发了一种可解释的图注意力网络(GAT)模型,该模型考虑了人口统计学因素,以预测NSSI风险,并使用所学习到的注意力矩阵突出显示NSSI特有的连通性。
基于成像数据提出的GAT模型准确率达到80%,当将自我报告的疼痛量表与成像数据一起用于区分NSSI患者和HC时,准确率提高到88%。该模型突出显示杏仁核-海马旁回和额下回(IFG)-脑岛的连通性在NSSI相关疼痛处理中起关键作用。纳入DC的成像数据后,模型的准确率达到74%,强调了一致的神经连通性模式。GAT模型对NSSI具有较高的预测准确率,纳入自我报告的疼痛量表可提高准确率。
我们提出的GAT模型强调了边缘区域、边缘旁区域和IFG在NSSI疼痛处理中的功能整合的重要性。我们的研究结果表明,疼痛处理改变是NSSI的关键机制,为潜在的神经调节干预策略提供了见解。