Rui Guanchun, Zhu Wenyi, Li Li, Lee Jongcheol, Guo Yiwen, Zou Qin, Wu Siyu, Li Ruipeng, Lannuzel Thierry, Domingues Dos Santos Fabrice, Aubart Mark A, Kim Seong H, Chen Long-Qing, Zhu Lei, Liu Zi-Kui, Zhang Q M
Arkema Inc. 900 First Avenue King of Prussia PA 19406 USA.
School of Electrical Engineering and Computer Science Materials Research Institute The Pennsylvania State University University Park PA 16802 USA.
Small Sci. 2025 Feb 22;5(6):2400624. doi: 10.1002/smsc.202400624. eCollection 2025 Jun.
A key component of cooling devices is the transfer of entropy from the cold load to heat sink. An electrocaloric (EC) polymer capable of generating both large electrocaloric effect (ECE) and substantial electroactuation can enable EC cooling devices to pump heat without external mechanisms, resulting in compact designs and enhanced efficiency. However, achieving both high ECE and significant electroactuation remains challenging. Herein, it is demonstrated that poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene-double bond) [P(VDF-TrFE-CFE-DB)] tetrapolymers can simultaneously generate high electrocaloric effects and electroactuations under low fields. These P(VDF-TrFE-CFE-DB) tetrapolymers are synthesized through the dehydrochlorination of P(VDF-TrFE-CFE) terpolymer. By facile tuning the composition of the initial terpolymer to avoid pure relaxor state, tetrapolymers with optimal DB compositions are achieved, near the critical endpoint of normal ferroelectric phase with diffused phase transition. The nearly vanishing energy barriers between the nonpolar to polar phases result in a strong electrocaloric response and significant electroactuation. Specifically, the P(VDF-TrFE-CFE-DB) tetrapolymer exhibits an EC entropy change Δ of 100 J kg K under 100 MV m: comparable to state-of-the-art (SOA) EC polymers, while delivering nearly twice the electroactuation of the SOA EC polymers. This work presents a general strategy for developing EC materials that combine large electrocaloric effect and electroactuation at low electric fields.
冷却装置的一个关键组成部分是将熵从冷负载传递到散热器。一种能够产生大电致热效应(ECE)和显著电驱动的电热(EC)聚合物可使EC冷却装置无需外部机制就能泵送热量,从而实现紧凑设计并提高效率。然而,同时实现高ECE和显著电驱动仍然具有挑战性。在此,证明了聚(偏二氟乙烯 - 三氟乙烯 - 氯氟乙烯 - 双键)[P(VDF - TrFE - CFE - DB)]四聚物在低电场下可同时产生高电致热效应和电驱动。这些P(VDF - TrFE - CFE - DB)四聚物是通过P(VDF - TrFE - CFE)三元共聚物的脱氯化氢反应合成的。通过轻松调整初始三元共聚物的组成以避免纯弛豫态,可获得具有最佳DB组成的四聚物,接近具有扩散相变的正常铁电相的临界端点。非极性到极性相之间几乎消失的能垒导致强烈的电致热响应和显著的电驱动。具体而言,P(VDF - TrFE - CFE - DB)四聚物在100 MV/m下表现出100 J kg⁻¹ K⁻¹的EC熵变Δ:与最先进的(SOA)EC聚合物相当,同时提供的电驱动几乎是SOA EC聚合物的两倍。这项工作提出了一种开发在低电场下兼具大电致热效应和电驱动的EC材料的通用策略。