Mao Pu, Wang Jiping, Zhang Lixue, Sun Qinzhao, Liu Xixia, He Liqiang, Liu Shujuan, Zhang Siwen, Gong Hao
State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
Phys Chem Chem Phys. 2020 Jun 21;22(23):13143-13153. doi: 10.1039/d0cp01071e. Epub 2020 Jun 3.
Polymer dielectrics with high dielectric performances and superior discharge energy capability are highly desirable for advanced electrostatic capacitor applications. However, the paradoxical relationship between dielectric polarization and electric breakdown behavior generally hinder their further enhancement in energy storage performances. Herein, polymer blended composite films with high energy storage capability were successfully fabricated by blending together poly(vinylidene fluoride) (PVDF) polymer and poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) terpolymer. The P(VDF-TrFE-CFE) terpolymer has a high dielectric constant to provide a large electric displacement under an applied electric field far below its breakdown field, which is anticipated to modulate the dielectric polarization behavior of PVDF polymer when blended in different proportions. Consequently, the polymer blended composite film consisting of 20 wt% (P(VDF-TrFE-CFE)) terpolymer exhibits a high discharge energy density of 13.63 J cm at an enhanced breakdown strength of 480 MV m. This obtained high discharge energy density is 84% higher than the pure PVDF film and 582% higher than a commercialized biaxially oriented polypropylene (BOPP). Large interfacial polarization and strong interaction of polymer chains between the PVDF polymer and P(VDF-TrFE-CFE) terpolymer may contribute to the tunable dielectric constant and electric breakdown strength, thus promoting the energy storage capability. This work establishes a facile, but effective approach to achieve the high energy storage capability of PVDF polymer-based flexible composite films for capacitive energy storage applications.
具有高介电性能和卓越放电能量能力的聚合物电介质对于先进的静电电容器应用而言是非常理想的。然而,介电极化与电击穿行为之间的矛盾关系通常会阻碍它们在储能性能方面的进一步提升。在此,通过将聚偏氟乙烯(PVDF)聚合物与聚(偏氟乙烯 - 三氟乙烯 - 氯氟乙烯)(P(VDF-TrFE-CFE))三元共聚物混合,成功制备出了具有高储能能力的聚合物共混复合薄膜。P(VDF-TrFE-CFE)三元共聚物具有高介电常数,能够在远低于其击穿场强的外加电场下提供大的电位移,预计当以不同比例混合时可调节PVDF聚合物的介电极化行为。因此,由20 wt%的(P(VDF-TrFE-CFE))三元共聚物组成的聚合物共混复合薄膜在480 MV m的增强击穿强度下表现出13.63 J cm的高放电能量密度。这一获得的高放电能量密度比纯PVDF薄膜高84%,比商业化的双向拉伸聚丙烯(BOPP)高582%。PVDF聚合物与P(VDF-TrFE-CFE)三元共聚物之间大的界面极化和聚合物链的强相互作用可能有助于实现可调介电常数和电击穿强度,从而提升储能能力。这项工作建立了一种简便但有效的方法,以实现用于电容储能应用的基于PVDF聚合物的柔性复合薄膜的高储能能力。