Suppr超能文献

使用具有特征一致性技术的二维神经网络在对比增强CT扫描上进行深度学习以检测肾细胞癌并进行亚型分类

Deep Learning for Detecting and Subtyping Renal Cell Carcinoma on Contrast-Enhanced CT Scans Using 2D Neural Network with Feature Consistency Techniques.

作者信息

Gupta Amit, Dhanakshirur Rohan Raju, Jain Kshitiz, Garg Sanil, Yadav Neel, Seth Amlesh, Das Chandan J

机构信息

Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, New Delhi, India.

Amarnath and Shashi Khosla School of Information Technology, Indian Institute of Technology Delhi, New Delhi, India.

出版信息

Indian J Radiol Imaging. 2024 Dec 11;35(3):395-401. doi: 10.1055/s-0044-1800804. eCollection 2025 Jul.

Abstract

The aim of this study was to explore an innovative approach for developing deep learning (DL) algorithm for renal cell carcinoma (RCC) detection and subtyping on computed tomography (CT): clear cell RCC (ccRCC) versus non-ccRCC using two-dimensional (2D) neural network architecture and feature consistency modules.  This retrospective study included baseline CT scans from 196 histopathologically proven RCC patients: 143 ccRCCs and 53 non-ccRCCs. Manual tumor annotations were performed on axial slices of corticomedullary phase images, serving as ground truth. After image preprocessing, the dataset was divided into training, validation, and testing subsets. The study tested multiple 2D DL architectures, with the FocalNet-DINO demonstrating highest effectiveness in detecting and classifying RCC. The study further incorporated spatial and class consistency modules to enhance prediction accuracy. Models' performance was evaluated using free-response receiver operating characteristic curves, recall rates, specificity, accuracy, F1 scores, and area under the curve (AUC) scores.  The FocalNet-DINO architecture achieved the highest recall rate of 0.823 at 0.025 false positives per image (FPI) for RCC detection. The integration of spatial and class consistency modules into the architecture led to 0.2% increase in recall rate at 0.025 FPI, along with improvements of 0.1% in both accuracy and AUC scores for RCC classification. These enhancements allowed detection of cancer in an additional 21 slices and reduced false positives in 126 slices.  This study demonstrates high performance for RCC detection and classification using DL algorithm leveraging 2D neural networks and spatial and class consistency modules, to offer a novel, computationally simpler, and accurate DL approach to RCC characterization.

摘要

本研究的目的是探索一种创新方法,用于开发基于计算机断层扫描(CT)的深度学习(DL)算法,以检测肾细胞癌(RCC)并进行亚型分类:使用二维(2D)神经网络架构和特征一致性模块区分透明细胞肾细胞癌(ccRCC)与非ccRCC。

这项回顾性研究纳入了196例经组织病理学证实的RCC患者的基线CT扫描:143例ccRCC和53例非ccRCC。在皮髓质期图像的轴位切片上进行手动肿瘤标注,作为真实标准。经过图像预处理后,将数据集分为训练集、验证集和测试集。该研究测试了多种2D DL架构,其中FocalNet-DINO在检测和分类RCC方面表现出最高的有效性。该研究进一步纳入了空间和类别一致性模块,以提高预测准确性。使用自由响应接收器操作特征曲线、召回率、特异性、准确率、F1分数和曲线下面积(AUC)分数来评估模型的性能。

FocalNet-DINO架构在RCC检测中,每幅图像假阳性率(FPI)为0.025时,召回率最高达到0.823。将空间和类别一致性模块集成到该架构中,在FPI为0.025时召回率提高了0.2%,同时RCC分类的准确率和AUC分数均提高了0.1%。这些改进使得能够在另外21个切片中检测到癌症,并减少了126个切片中的假阳性。

本研究证明了使用利用2D神经网络以及空间和类别一致性模块的DL算法进行RCC检测和分类具有高性能,为RCC特征描述提供了一种新颖、计算更简单且准确的DL方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7f2/12169937/9cc2d170dd11/10-1055-s-0044-1800804-i2494028-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验