文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

优化超顺磁性铁氧体纳米颗粒:微波辅助热分解合成方法。

Optimizing superparamagnetic ferrite nanoparticles: microwave-assisted thermal decomposition synthesis methods.

作者信息

Moghaddari Kimia, Schumacher Lars, Pöttgen Rainer, Kickelbick Guido

机构信息

Inorganic Solid-State Chemistry, Saarland University Campus, Building C4 1 66123 Saarbrücken Germany

Institut für Anorganische und Analytische Chemie, Universität Münster Corrensstrasse 30 48149 Münster Germany.

出版信息

Nanoscale Adv. 2025 May 26;7(15):4563-4576. doi: 10.1039/d5na00244c. eCollection 2025 Jul 22.


DOI:10.1039/d5na00244c
PMID:40530251
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12168923/
Abstract

Superparamagnetic iron oxide nanoparticles are of crucial importance for various applications in medicine and biology as well as in materials science, where properties such as magnetism and inductive heating are advantageous. In this study, we systematically compare the synthesis methods for ferrite nanoparticles with those of pure iron oxide, focusing on their final properties. We synthesized superparamagnetic substituted ferrite nanoparticles with an average diameter of 5 to 8 nm with the general formula of M Fe O (M = Fe, Mn, Co) using both conventional thermal decomposition (TD) method and microwave-assisted (MW) methods. Although the manganese-substituted particles obtained through both methods exhibited a narrow size distribution and high surface coverage with oleic acid, they demonstrated lower heating efficiency in an induction field compared to the cobalt-substituted particles. In particular, the replacement of Fe ions with Co ions significantly improved the self-heating ability and increased the specific absorption rate (SAR) from 22.7 for FeO to 106.3 W g for CoFeO nanoparticles. In addition, the concentration of 1,2-dodecanediol in the reaction mixture significantly influenced the shape and size distribution of the particles. Microwave-assisted synthesis resulted in higher incorporation of M ions, as confirmed by ICP-MS and EDX spectroscopy, and more uniform particle sizes due to homogeneous nucleation. By optimizing the microwave method, we were able to produce small size superparamagnetic particles with high saturation magnetization (89.2 emu g at 300 K), capable of generating more heat in the magnetic field, making these particles suitable candidates for induction heating in materials.

摘要

超顺磁性氧化铁纳米粒子在医学、生物学以及材料科学的各种应用中至关重要,在这些领域中,磁性和感应加热等特性具有优势。在本研究中,我们系统地比较了铁氧体纳米粒子与纯氧化铁的合成方法,重点关注它们的最终性能。我们使用传统热分解(TD)方法和微波辅助(MW)方法,合成了平均直径为5至8 nm、通式为MFeO(M = Fe、Mn、Co)的超顺磁性取代铁氧体纳米粒子。尽管通过这两种方法获得的锰取代粒子均表现出窄尺寸分布和高油酸表面覆盖率,但与钴取代粒子相比,它们在感应场中的加热效率较低。特别是,用Co离子取代Fe离子显著提高了自热能力,并将比吸收率(SAR)从FeO的22.7提高到CoFeO纳米粒子的106.3 W g。此外,反应混合物中1,2 - 十二烷二醇的浓度显著影响粒子的形状和尺寸分布。如通过ICP - MS和EDX光谱所证实的,微波辅助合成导致更高的M离子掺入率,并且由于均匀成核而使粒径更均匀。通过优化微波方法,我们能够制备出具有高饱和磁化强度(300 K时为89.2 emu g)的小尺寸超顺磁性粒子,能够在磁场中产生更多热量,使这些粒子成为材料感应加热的合适候选者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be75/12282396/991b95f039e8/d5na00244c-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be75/12282396/66633afee6df/d5na00244c-s1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be75/12282396/e8dccdcd37a2/d5na00244c-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be75/12282396/3ba6ccf82b18/d5na00244c-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be75/12282396/092092bb30a0/d5na00244c-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be75/12282396/005d1683b676/d5na00244c-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be75/12282396/c52093b2ae76/d5na00244c-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be75/12282396/b4b011a3596f/d5na00244c-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be75/12282396/6ae32ca30c56/d5na00244c-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be75/12282396/991b95f039e8/d5na00244c-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be75/12282396/66633afee6df/d5na00244c-s1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be75/12282396/e8dccdcd37a2/d5na00244c-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be75/12282396/3ba6ccf82b18/d5na00244c-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be75/12282396/092092bb30a0/d5na00244c-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be75/12282396/005d1683b676/d5na00244c-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be75/12282396/c52093b2ae76/d5na00244c-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be75/12282396/b4b011a3596f/d5na00244c-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be75/12282396/6ae32ca30c56/d5na00244c-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be75/12282396/991b95f039e8/d5na00244c-f8.jpg

相似文献

[1]
Optimizing superparamagnetic ferrite nanoparticles: microwave-assisted thermal decomposition synthesis methods.

Nanoscale Adv. 2025-5-26

[2]
Preparation of non-spherical nano-FeO and its effect on thermal decomposition of AP and combustion performance of composite fuels.

Phys Chem Chem Phys. 2025-6-18

[3]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[4]
Carbon dioxide detection for diagnosis of inadvertent respiratory tract placement of enterogastric tubes in children.

Cochrane Database Syst Rev. 2025-2-19

[5]
Comparison of self-administered survey questionnaire responses collected using mobile apps versus other methods.

Cochrane Database Syst Rev. 2015-7-27

[6]
A Novel Design of a Portable Birdcage via Meander Line Antenna (MLA) to Lower Beta Amyloid (Aβ) in Alzheimer's Disease.

IEEE J Transl Eng Health Med. 2025-4-10

[7]
Housing improvements for health and associated socio-economic outcomes.

Cochrane Database Syst Rev. 2013-2-28

[8]
Sexual Harassment and Prevention Training

2025-1

[9]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2017-12-22

[10]
Survivor, family and professional experiences of psychosocial interventions for sexual abuse and violence: a qualitative evidence synthesis.

Cochrane Database Syst Rev. 2022-10-4

本文引用的文献

[1]
Induction heating induced self-healing of nanocomposites based on surface-functionalized cationic iron oxide particles and polyelectrolytes.

Nanoscale Adv. 2021-8-5

[2]
Structural, magnetic and hyperthermia properties and their correlation in cobalt-doped magnetite nanoparticles.

RSC Adv. 2021-12-24

[3]
Recent Advances in Synthesis and Applications of MFeO (M = Co, Cu, Mn, Ni, Zn) Nanoparticles.

Nanomaterials (Basel). 2021-6-13

[4]
Mn-Doping level dependence on the magnetic response of MnFeO ferrite nanoparticles.

Dalton Trans. 2019-8-14

[5]
Surface Modification of Magnetic Iron Oxide Nanoparticles.

Nanomaterials (Basel). 2018-10-9

[6]
Standardizing Size- and Shape-Controlled Synthesis of Monodisperse Magnetite (FeO) Nanocrystals by Identifying and Exploiting Effects of Organic Impurities.

ACS Nano. 2017-6-15

[7]
Synthesis, characterization, applications, and challenges of iron oxide nanoparticles.

Nanotechnol Sci Appl. 2016-8-19

[8]
Ultrafast Preparation of Monodisperse Fe3 O4 Nanoparticles by Microwave-Assisted Thermal Decomposition.

Chemistry. 2016-8-8

[9]
Magnetic Field Triggered Multicycle Damage Sensing and Self Healing.

Sci Rep. 2015-9-8

[10]
Self-Healing of Core-Shell Magnetic Polystyrene Nanocomposites.

ACS Appl Mater Interfaces. 2015-7-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索