文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁性氧化铁纳米颗粒的表面改性

Surface Modification of Magnetic Iron Oxide Nanoparticles.

作者信息

Zhu Nan, Ji Haining, Yu Peng, Niu Jiaqi, Farooq M U, Akram M Waseem, Udego I O, Li Handong, Niu Xiaobin

机构信息

School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China.

Institute of Fundamental and Frontier Science, University of Electronic Science and Technology, Chengdu 610054, China.

出版信息

Nanomaterials (Basel). 2018 Oct 9;8(10):810. doi: 10.3390/nano8100810.


DOI:10.3390/nano8100810
PMID:30304823
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6215286/
Abstract

Functionalized iron oxide nanoparticles (IONPs) are of great interest due to wide range applications, especially in nanomedicine. However, they face challenges preventing their further applications such as rapid agglomeration, oxidation, etc. Appropriate surface modification of IONPs can conquer these barriers with improved physicochemical properties. This review summarizes recent advances in the surface modification of IONPs with small organic molecules, polymers and inorganic materials. The preparation methods, mechanisms and applications of surface-modified IONPs with different materials are discussed. Finally, the technical barriers of IONPs and their limitations in practical applications are pointed out, and the development trends and prospects are discussed.

摘要

功能化氧化铁纳米颗粒(IONPs)因其广泛的应用而备受关注,尤其是在纳米医学领域。然而,它们面临着阻碍其进一步应用的挑战,如快速团聚、氧化等。对IONPs进行适当的表面修饰可以克服这些障碍,并改善其物理化学性质。本文综述了近年来用小分子有机物、聚合物和无机材料对IONPs进行表面修饰的研究进展。讨论了用不同材料对IONPs进行表面修饰的制备方法、作用机制及应用。最后,指出了IONPs的技术障碍及其在实际应用中的局限性,并探讨了其发展趋势和前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d3/6215286/c289fb24ff1d/nanomaterials-08-00810-sch008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d3/6215286/de4169fa930f/nanomaterials-08-00810-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d3/6215286/1af8e128fdf9/nanomaterials-08-00810-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d3/6215286/6e81e86b9809/nanomaterials-08-00810-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d3/6215286/4d307d40520f/nanomaterials-08-00810-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d3/6215286/0726dd351b92/nanomaterials-08-00810-sch002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d3/6215286/27b22a88b680/nanomaterials-08-00810-sch003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d3/6215286/71ec77b379e0/nanomaterials-08-00810-sch004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d3/6215286/c65e8a6769da/nanomaterials-08-00810-sch005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d3/6215286/5a6633faf023/nanomaterials-08-00810-sch006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d3/6215286/c2c0ae96055b/nanomaterials-08-00810-sch007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d3/6215286/c289fb24ff1d/nanomaterials-08-00810-sch008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d3/6215286/de4169fa930f/nanomaterials-08-00810-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d3/6215286/1af8e128fdf9/nanomaterials-08-00810-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d3/6215286/6e81e86b9809/nanomaterials-08-00810-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d3/6215286/4d307d40520f/nanomaterials-08-00810-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d3/6215286/0726dd351b92/nanomaterials-08-00810-sch002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d3/6215286/27b22a88b680/nanomaterials-08-00810-sch003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d3/6215286/71ec77b379e0/nanomaterials-08-00810-sch004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d3/6215286/c65e8a6769da/nanomaterials-08-00810-sch005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d3/6215286/5a6633faf023/nanomaterials-08-00810-sch006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d3/6215286/c2c0ae96055b/nanomaterials-08-00810-sch007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d3/6215286/c289fb24ff1d/nanomaterials-08-00810-sch008.jpg

相似文献

[1]
Surface Modification of Magnetic Iron Oxide Nanoparticles.

Nanomaterials (Basel). 2018-10-9

[2]
Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications.

Sci Technol Adv Mater. 2015-4-28

[3]
Surface engineering of magnetic iron oxide nanoparticles by polymer grafting: synthesis progress and biomedical applications.

Nanoscale. 2020-7-23

[4]
Multifunctional Iron Oxide Magnetic Nanoparticles for Biomedical Applications: A Review.

Materials (Basel). 2022-1-10

[5]
Recent trends in preparation and biomedical applications of iron oxide nanoparticles.

J Nanobiotechnology. 2024-1-8

[6]
Unique Properties of Surface-Functionalized Nanoparticles for Bio-Application: Functionalization Mechanisms and Importance in Application.

Nanomaterials (Basel). 2022-4-13

[7]
Exploration of Metal-Doped Iron Oxide Nanoparticles as an Antimicrobial Agent: A Comprehensive Review.

Cureus. 2024-9-16

[8]
Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: A road from failure to success in clinical applications.

J Control Release. 2020-12-10

[9]
Advancements in Iron Oxide Nanoparticles for Multimodal Imaging and Tumor Theranostics.

Curr Med Chem. 2025

[10]
New Insights into Biocompatible Iron Oxide Nanoparticles: A Potential Booster of Gene Delivery to Stem Cells.

Small. 2020-9

引用本文的文献

[1]
Nickel nanoparticles: a novel platform for cancer-targeted delivery and multimodal therapy.

Front Drug Deliv. 2025-7-30

[2]
Iron oxide/silver-doped iron oxide nanoparticles: facile synthesis, characterization, antibacterial activity, genotoxicity and anticancer evaluation.

Sci Rep. 2025-8-12

[3]
Synthesis, Characterization, and Application of Magnetic Zeolite Nanocomposites: A Review of Current Research and Future Applications.

Nanomaterials (Basel). 2025-6-13

[4]
Advances in constructing biocompatible nanocarriers.

Drug Deliv Transl Res. 2025-6-18

[5]
Optimizing superparamagnetic ferrite nanoparticles: microwave-assisted thermal decomposition synthesis methods.

Nanoscale Adv. 2025-5-26

[6]
Magnetic mesoporous silica nanoparticles as advanced polymeric scaffolds for efficient cancer chemotherapy: recent progress and challenges.

RSC Adv. 2025-5-14

[7]
Imaging-guided precision hyperthermia with magnetic nanoparticles.

Nat Rev Bioeng. 2025-3

[8]
Enhanced detection of bovine serum albumin using single- and double-chip configuration of tunneling magnetoresistance-based biosensor with green-synthesized magnetite/Ag nanotag.

Mikrochim Acta. 2025-2-11

[9]
Doxorubicin-Conjugated Nanoparticles for Potential Use as Drug Delivery Systems.

Nanomaterials (Basel). 2025-1-17

[10]
Advances in engineering nanoparticles for magnetic particle imaging (MPI).

Sci Adv. 2025-1-10

本文引用的文献

[1]
Preparation of core-shell FeO@poly(dopamine) magnetic nanoparticles for biosensor construction.

J Mater Chem B. 2014-2-14

[2]
Neuronal cells loaded with PEI-coated FeO nanoparticles for magnetically guided nerve regeneration.

J Mater Chem B. 2013-8-7

[3]
Impact of Humidity on Silica Nanoparticle Agglomerate Morphology and Size Distribution.

Langmuir. 2018-7-13

[4]
Dopamine coated FeO nanoparticles as enzyme mimics for the sensitive detection of bacteria.

Chem Commun (Camb). 2017-11-14

[5]
Functionalized graphene oxide/FeO hybrids for cellular magnetic resonance imaging and fluorescence labeling.

Mater Sci Eng C Mater Biol Appl. 2017-9-1

[6]
One-pot synthesis of dextran-coated iron oxide nanoclusters for real-time regional lymph node mapping.

Int J Nanomedicine. 2017-4-27

[7]
Enhanced MRI T Relaxivity in Contrast-Probed Anchor-Free PEGylated Iron Oxide Nanoparticles.

Nanoscale Res Lett. 2017-12

[8]
High impact of in situ dextran coating on biocompatibility, stability and magnetic properties of iron oxide nanoparticles.

Mater Sci Eng C Mater Biol Appl. 2017-6-1

[9]
Self-Assembled Framework Enhances Electronic Communication of Ultrasmall-Sized Nanoparticles for Exceptional Solar Hydrogen Evolution.

J Am Chem Soc. 2017-3-24

[10]
Self-Assembled and One-Step Synthesis of Interconnected 3D Network of FeO/Reduced Graphene Oxide Nanosheets Hybrid for High-Performance Supercapacitor Electrode.

ACS Appl Mater Interfaces. 2017-3-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索