El Akrouchi Manal, Mhada Manal, Gracia Dachena Romain, Hawkesford Malcolm J, Gérard Bruno
College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco.
School of Collective Intelligence, University Mohammed VI Polytechnic (UM6P), Rabat, Morocco.
Front Plant Sci. 2025 Jun 2;16:1472688. doi: 10.3389/fpls.2025.1472688. eCollection 2025.
Quinoa is a resilient, nutrient-rich crop with strong potential for cultivation in marginal environments, yet it remains underutilized and under-researched, particularly in the context of automated yield estimation. In this study, we introduce a novel deep learning approach for quinoa panicle detection and counting using instance segmentation via Mask R-CNN, enhanced with an EfficientNet-B7 backbone and Mish activation function. We conducted a comparative analysis of various backbone architectures, and our improved model demonstrated superior performance in accurately detecting and segmenting individual panicles. This instance-level detection enables more precise yield estimation and offers a significant advancement over traditional methods. To the best of our knowledge, this is the first application of instance segmentation for quinoa panicle analysis, highlighting the potential of advanced deep learning techniques in agricultural monitoring and contributing valuable benchmarks for future AI-driven research in quinoa cultivation.
藜麦是一种适应性强、营养丰富的作物,在边缘环境中具有很强的种植潜力,但仍未得到充分利用和研究,特别是在自动产量估计方面。在本研究中,我们引入了一种新颖的深度学习方法,通过使用Mask R-CNN进行实例分割来检测和计数藜麦穗,该方法采用EfficientNet-B7骨干网络和Mish激活函数进行增强。我们对各种骨干网络架构进行了比较分析,改进后的模型在准确检测和分割单个穗方面表现出卓越的性能。这种实例级检测能够实现更精确的产量估计,相较于传统方法有了显著进步。据我们所知,这是实例分割在藜麦穗分析中的首次应用,凸显了先进深度学习技术在农业监测中的潜力,并为未来藜麦种植中人工智能驱动的研究提供了有价值的基准。