Suppr超能文献

通过RTEL1第492位氨基酸处的两种不同点突变将端粒保护与长度调节分离。

Separation of telomere protection from length regulation by two different point mutations at amino acid 492 of RTEL1.

作者信息

Smoom Riham, May Catherine Lee, Lichtental Dan, Bar-Ness Kamil, Rangel Reina, Khoury Johad, Nachmani Daphna, Avrahami Dana, Ahangari Farida, Skordalakes Emmanuel, Kaminski Naftali, Kaestner Klaus H, Tzfati Yehuda

机构信息

Department of Genetics, The Silberman Institute of Life Sciences, Safra Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.

Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.

出版信息

Nucleic Acids Res. 2025 Jun 6;53(11). doi: 10.1093/nar/gkaf507.

Abstract

RTEL1 is an essential DNA helicase that plays multiple roles in genome stability and telomere length regulation. The ultra-long telomeres of the house mouse hinder its utility as a model for telomere-related diseases. We have previously generated a mouse model with human-length telomeres, termed "Telomouse," by substituting methionine 492 of mouse Rtel1 to a lysine (Rtel1M492K). In humans, a methionine to isoleucine mutation at this position causes the fatal telomere biology disorder Hoyeraal-Hreidarsson syndrome (HHS). Here, we introduced the Rtel1M492I point mutation into the mouse genome, generating another mouse model, which we termed "HHS mouse." The HHS mouse telomeres are not as short as those of the Telomouse but nevertheless display higher levels of telomeric DNA damage, fragility, and recombination, associated with anaphase bridges and micronuclei. The HHS mouse also exhibits aberrant hematopoiesis and pre-fibrotic alterations in the lung. These observations indicate that the two mutations at the same codon separate critical functions of RTEL1: Rtel1M492K mainly reduces the telomere length setpoint, while Rtel1M492I predominantly disrupts telomere protection. The two mouse models enable dissecting the mechanistic roles of RTEL1 and the different contributions of short telomeres and DNA damage to telomere biology disorders and genomic instability.

摘要

RTEL1是一种重要的DNA解旋酶,在基因组稳定性和端粒长度调控中发挥多种作用。家鼠的超长端粒阻碍了其作为端粒相关疾病模型的应用。我们之前通过将小鼠Rtel1的第492位甲硫氨酸替换为赖氨酸(Rtel1M492K),构建了一种具有人类长度端粒的小鼠模型,称为“端粒小鼠”。在人类中,该位置的甲硫氨酸到异亮氨酸突变会导致致命的端粒生物学疾病——霍耶拉尔-赫雷达尔森综合征(HHS)。在此,我们将Rtel1M492I点突变引入小鼠基因组,构建了另一种小鼠模型,我们称之为“HHS小鼠”。HHS小鼠的端粒不像端粒小鼠的端粒那么短,但仍表现出更高水平的端粒DNA损伤、脆性和重组,伴有后期桥和微核。HHS小鼠还表现出异常的造血功能以及肺部的纤维化前改变。这些观察结果表明,同一密码子上的两种突变分离了RTEL1的关键功能:Rtel1M492K主要降低端粒长度设定点,而Rtel1M492I主要破坏端粒保护。这两种小鼠模型有助于剖析RTEL1的机制作用以及短端粒和DNA损伤对端粒生物学疾病和基因组不稳定的不同贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8849/12203905/3c8f919405d7/gkaf507figgra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验