深度水稻6mA:一种用于水稻基因组中6mA位点预测的卷积神经网络方法。

DeepRice6mA: A convolutional neural network approach for 6mA site prediction in the rice Genome.

作者信息

Alsharif Hussam

机构信息

Jamoum University College, Computer Science Department, Umm Al-Qura University, Makkah, Saudi Arabia.

出版信息

PLoS One. 2025 Jun 18;20(6):e0325216. doi: 10.1371/journal.pone.0325216. eCollection 2025.

Abstract

As one of the most critical post-replication modifications, N6-methylation (6mA) at adenine residue plays an important role in a variety of biological functions. Existing computational methods for identifying 6mA sites across large genomic regions tend to fall short in either accuracy or computational efficiency. To address this, we introduce DeepRice6mA, a sophisticated comprehensive predictive tool for identifying rice 6mA sites, using a deep learning approach that incorporates ensemble strategies from one-hot encoding and 3-kmer feature embedding. The proposed model, labeled DeepRice6mA, reaches state-of-the-art results compared to current approaches, with 10-fold cross-validation scores of 98% for accuracy, 98% for sensitivity, 98% for specificity, a Matthew's correlation coefficient (MCC) of 0.96, and an area under the receiver operating characteristic curve (AUC) of 0.99. We anticipate that DeepRice6mA will significantly enhance our understanding of DNA methylation and its implications for biological processes and disease states.

摘要

作为最重要的复制后修饰之一,腺嘌呤残基上的N6-甲基化(6mA)在多种生物学功能中发挥着重要作用。现有的用于识别大基因组区域中6mA位点的计算方法在准确性或计算效率方面往往存在不足。为了解决这个问题,我们引入了DeepRice6mA,这是一种用于识别水稻6mA位点的复杂综合预测工具,它采用了深度学习方法,结合了来自独热编码和3-核苷酸特征嵌入的集成策略。与当前方法相比,所提出的模型DeepRice6mA达到了当前最优的结果,在10折交叉验证中,准确率为98%,灵敏度为98%,特异性为98%,马修斯相关系数(MCC)为0.96,以及受试者工作特征曲线下面积(AUC)为0.99。我们预计,DeepRice6mA将显著增强我们对DNA甲基化及其对生物过程和疾病状态影响的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1b5/12176223/7d94751ed40b/pone.0325216.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索