Li Huang-Jie, Li Shunxing, Zhang Ya-Lin, Liu Fengjiao, Huang Zhao-Jing, Luo Jia-Yi, Zheng Fengying, Yang Li-Guo, Shi Ke, Han Feng-Juan
College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou 363000, China.
Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 3630003, China.
Anal Chem. 2025 Jul 1;97(25):13422-13431. doi: 10.1021/acs.analchem.5c01800. Epub 2025 Jun 18.
Coordination polymers (CPs) have gained significant attention due to their unique structural tunability and broad application prospects. However, their instability in water remains a key challenge for practical applications. This study presents a dual-channel fluorescent sensor based on water-unstable zinc coordination polymers (Zn-CPs) for the sensitive detection of copper ions (Cu) in water and cysteine (Cys) in serum. Zn-CPs underwent structural collapse in water, deactivating matrix coordination-induced emission (MCIE) and quenching blue fluorescence. pH adjustment activated the aggregation-induced emission (AIE) of the ligand, turning on green fluorescence. The introduction of Cu facilitated the formation of zinc-copper co-coordination polymers (Zn/Cu-CPs), improving water stability while preserving blue fluorescence and inhibiting green fluorescence activation. In contrast, Cys competitively coordinated with Cu, preventing the formation of Zn/Cu-CPs, resulting in blue fluorescence quenching and green fluorescence activation. The sensor exhibited a linear detection range of 0.01-0.25 mg/L for Cu (limit of detection: 0.0162 mg/L) and 0.5-14 μM for Cys (limit of detection: 0.4380 μM). Unlike conventional approaches that focus on enhancing water stability, this study highlights the potential of water-unstable coordination polymers in environmental and bioanalytical applications and provides new insights into the design of fluorescence sensors based on structural transformations.
配位聚合物(CPs)因其独特的结构可调性和广阔的应用前景而备受关注。然而,它们在水中的不稳定性仍然是实际应用中的一个关键挑战。本研究提出了一种基于水不稳定锌配位聚合物(Zn-CPs)的双通道荧光传感器,用于灵敏检测水中的铜离子(Cu)和血清中的半胱氨酸(Cys)。Zn-CPs在水中发生结构坍塌,使基质配位诱导发射(MCIE)失活并猝灭蓝色荧光。pH调节激活了配体的聚集诱导发射(AIE),开启绿色荧光。Cu的引入促进了锌-铜共配位聚合物(Zn/Cu-CPs)的形成,提高了水稳定性,同时保留了蓝色荧光并抑制了绿色荧光的激活。相反,Cys与Cu竞争性配位,阻止了Zn/Cu-CPs的形成,导致蓝色荧光猝灭和绿色荧光激活。该传感器对Cu的线性检测范围为0.01-0.25 mg/L(检测限:0.0162 mg/L),对Cys的线性检测范围为0.5-14 μM(检测限:0.4380 μM)。与专注于提高水稳定性的传统方法不同,本研究突出了水不稳定配位聚合物在环境和生物分析应用中的潜力,并为基于结构转变的荧光传感器设计提供了新的见解。