Hirschinger Jérôme
Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, Strasbourg, France.
Solid State Nucl Magn Reson. 2025 Aug;138:102017. doi: 10.1016/j.ssnmr.2025.102017. Epub 2025 Jun 4.
A simple method proposed in an insightful paper by A. J. Vega [J. Magn. Reson. 65 (1985) 252-267] is applied for calculating the effects of chemical exchange on magic-angle spinning (MAS) NMR spectra in the case of a two-site rotational jump motion. This approach which only requires two basic expressions of T for the limiting cases of fast and slow exchange is compared with exact numerical calculations for arbitrary rates of motion and spinning frequencies. This comparison justifies the application of relaxation theory (RT) to calculate fast-exchange lineshapes but the slow-exchange T time constant originally derived by A. Schmidt and S. Vega [J. Chem. Phys. 87 (1987) 6895-6907] using Floquet-perturbation theory (FPT) fails to account for the differences in the spinning sideband linewidths. In this paper, the complete FPT (cFPT) expression of the MAS spectrum is shown to account for all details of differential sideband broadening observed in the slow-exchange regime. Moreover, the RT and cFPT solutions give insight into the effects of molecular dynamics on the MAS spectra and decrease dramatically the computation time. The calculation procedure using the RT and cFPT formulas yield lineshape simulations that are in very good agreement with exact numerical results except in the intermediate-exchange regime when the sideband linewidths become comparable with or larger than the MAS rate. This is a minor drawback in practice as fast relaxation then makes quantitative measurements difficult.
A. J. 维加在一篇颇具见地的论文[《磁共振杂志》65 (1985) 252 - 267]中提出的一种简单方法,被应用于计算双位点旋转跳跃运动情况下化学交换对魔角旋转(MAS)核磁共振谱的影响。这种方法只需要T在快速和慢速交换极限情况下的两个基本表达式,并与任意运动速率和旋转频率的精确数值计算进行了比较。这种比较证明了应用弛豫理论(RT)来计算快速交换线形是合理的,但A. 施密特和S. 维加[《化学物理杂志》87 (1987) 6895 - 6907]最初使用弗洛凯微扰理论(FPT)推导的慢速交换T时间常数未能考虑到旋转边带线宽的差异。在本文中,MAS谱的完整FPT(cFPT)表达式被证明能够解释在慢速交换区域观察到的差分边带展宽的所有细节。此外,RT和cFPT解深入了解了分子动力学对MAS谱的影响,并显著减少了计算时间。使用RT和cFPT公式的计算过程产生的线形模拟与精确数值结果非常吻合,除了在中间交换区域,此时边带线宽与MAS速率相当或大于MAS速率。在实际应用中,这是一个小缺点,因为快速弛豫会使定量测量变得困难。