Guedes Jessica, Szadai Leticia, Woldmar Nicole, Jánosi Ágnes Judit, Koroncziová Klára, Lengyel Blanka Míra, Kelemen Bella, Boltas Eszter, Gyulai Rolland, Wieslander Elisabet, Pawłowski Krzysztof, Horvatovich Peter, Betancourt Lazaro, Szasz A Marcell, Vereb Zoltan, Horvath Peter, Oskolás Henriett, Appelqvist Roger, Malm Johan, Marko-Varga Gyorgy, Németh István Balázs, Gil Jeovanis
Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Lund, Sweden.
Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.
J Proteomics. 2025 Jun 16;319:105482. doi: 10.1016/j.jprot.2025.105482.
Melanoma remains the most aggressive form of skin cancer, characterized by high metastatic potential, genetic heterogeneity, and resistance to conventional therapies. The Melanoma MEGA-Study is a multi-center initiative designed to address these clinical challenges by integrating advanced proteogenomic profiling, clinical metadata, with AI-driven digital pathology and machine learning analytics, aiming to enhance personalized treatment strategies and improve patient outcomes. Between 2013 and 2022, a cohort of 1653 melanoma patients each contributed a primary tumor sample, with 361 providing 819 metastatic tumor samples. Clinical data collection for this cohort continued until May 2023. Comprehensive analyses using high-resolution mass spectrometry, optimized workflows for formalin-fixed paraffin-embedded tissues, and advanced digital pathology platforms enabled precise mapping of the tumor microenvironment, identification of metabolic reprogramming, and characterization of immune evasion signatures. The European Cancer Moonshot Lund Center's MEGA-Study, under the academic umbrella of Lund and Szeged universities, marks a significant advancement in its collaborative efforts with the National Institutes of Health (NIH) under the Cancer Moonshot partnership. This initiative exemplifies the center's dedication to pioneering cancer research and underscores the strength of its international collaborations. SIGNIFICANCE: The significance of this study lies in its pioneering integration of high-resolution proteomics, AI-driven digital pathology, and comprehensive clinical annotation to unravel the complex molecular landscape of melanoma. By leveraging a robust, population-based cohort of 1653 patients, including extensive analyses of both primary and metastatic tumor specimens, our approach provides unprecedented insights into the proteogenomic alterations that underpin tumor progression, immune evasion, and therapeutic resistance. The preliminary application of advanced mass spectrometry techniques to formalin-fixed paraffin-embedded tissues, combined with state-of-the-art digital pathology and machine learning, has enabled the identification of novel protein biomarkers and metabolic signatures that hold promise for refining patient stratification and informing personalized treatment strategies. This integrative framework not only deepens our understanding of melanoma biology but also establishes a scalable model for precision oncology that can be extended to other complex malignancies. Ultimately, our findings have the potential to transform clinical practice by facilitating earlier risk stratification, improving prognostication, and guiding the development of targeted therapeutic interventions for this highly aggressive cancer.
黑色素瘤仍然是最具侵袭性的皮肤癌形式,其特点是具有高转移潜能、基因异质性以及对传统疗法的抗性。黑色素瘤大型研究(Melanoma MEGA-Study)是一项多中心计划,旨在通过整合先进的蛋白质基因组分析、临床元数据,结合人工智能驱动的数字病理学和机器学习分析来应对这些临床挑战,旨在加强个性化治疗策略并改善患者预后。在2013年至2022年期间,1653名黑色素瘤患者组成的队列各自提供了一份原发性肿瘤样本,其中361名患者提供了819份转移瘤样本。该队列的临床数据收集持续到2023年5月。使用高分辨率质谱、针对福尔马林固定石蜡包埋组织的优化工作流程以及先进的数字病理学平台进行的综合分析,能够精确绘制肿瘤微环境图谱、识别代谢重编程并表征免疫逃逸特征。欧洲癌症“登月计划”隆德中心的大型研究,在隆德大学和塞格德大学的学术框架下,标志着其在与美国国立卫生研究院(NIH)癌症“登月计划”合作中的重大进展。这一计划体现了该中心对开拓性癌症研究的奉献精神,并凸显了其国际合作的实力。意义:本研究的意义在于其开创性地整合了高分辨率蛋白质组学、人工智能驱动的数字病理学和全面的临床注释,以揭示黑色素瘤复杂的分子格局。通过利用由1653名患者组成的强大的基于人群的队列,包括对原发性和转移性肿瘤标本的广泛分析,我们的方法为支撑肿瘤进展、免疫逃逸和治疗抗性的蛋白质基因组改变提供了前所未有的见解。先进质谱技术在福尔马林固定石蜡包埋组织中的初步应用,结合最先进的数字病理学和机器学习,使得能够识别有望优化患者分层并为个性化治疗策略提供信息的新型蛋白质生物标志物和代谢特征。这种综合框架不仅加深了我们对黑色素瘤生物学的理解,还建立了一个可扩展的精准肿瘤学模型,该模型可扩展到其他复杂恶性肿瘤。最终,我们的研究结果有可能通过促进早期风险分层、改善预后预测以及指导针对这种高度侵袭性癌症的靶向治疗干预措施的开发来改变临床实践。