Silva Ana C Q, Teixeira Maria C, Jesus Ana, Costa Paulo C, Almeida Isabel F, Dias-Pereira Patrícia, Correia-Sá Inês, Oliveira Helena, Silvestre Armando J D, Vilela Carla, Freire Carmen S R
CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
Int J Biol Macromol. 2025 Aug;319(Pt 2):145320. doi: 10.1016/j.ijbiomac.2025.145320. Epub 2025 Jun 16.
Melanoma often requires adjuvant therapy to combat tumor proliferation and metastasis. In this context, microneedle systems (MNs) present a promising avenue for minimally invasive delivery of drugs or bioactive compounds with natural anticancer properties, targeting the deeper layers of the skin. Herein, we describe the fabrication of bioactive dissolving microneedles composed of carboxymethylcellulose (CMC) and fucoidan (Fuc) using a simple and eco-friendly micromolding technique. The microneedles showcased integral bodies and sharp tips with heights of 456 μm, and robust mechanical properties, reaching a maximum force of 1.07 N needle. Preliminary insertion tests in a polymeric skin model demonstrated the ability of CMC_Fuc MNs to penetrate up to 381 μm, further validated in ex vivo human skin samples with insertion depths of 325-453 μm. Dissolution studies in an agarose hydrogel skin model revealed the complete dissolution of the MNs tips within 12 min. In vitro cytotoxicity assays unveiled the antitumoral effect of the CMC_Fuc MNs on A375 melanoma cells, leading to a significant cell viability reduction in both a 2D cell culture (ca. 83 %) and a 3D bioprinted melanoma culture model (ca. 56 %), after 48 h. The CMC_Fuc microneedle systems show great promise for minimally invasive adjuvant treatment of melanoma.
黑色素瘤通常需要辅助治疗来对抗肿瘤增殖和转移。在这种情况下,微针系统为微创递送具有天然抗癌特性的药物或生物活性化合物提供了一条有前景的途径,可靶向皮肤深层。在此,我们描述了使用一种简单且环保的微成型技术制备由羧甲基纤维素(CMC)和岩藻依聚糖(Fuc)组成的生物活性溶解微针。这些微针展示出整体结构和尖锐的针尖,高度为456μm,并且具有强大的机械性能,单个微针的最大受力为1.07N。在聚合物皮肤模型中的初步插入测试表明,CMC_Fuc微针能够穿透达381μm,在离体人皮肤样本中进一步验证,插入深度为325 - 453μm。在琼脂糖水凝胶皮肤模型中的溶解研究表明,微针尖端在12分钟内完全溶解。体外细胞毒性试验揭示了CMC_Fuc微针对A375黑色素瘤细胞的抗肿瘤作用,在48小时后,导致二维细胞培养(约83%)和三维生物打印黑色素瘤培养模型(约56%)中的细胞活力显著降低。CMC_Fuc微针系统在黑色素瘤的微创辅助治疗方面显示出巨大的潜力。