Wang Hongtao, Li Binglong, Miao Min, Zhang Tao, Wang Haodi, Wang Xu, Jia Shilong, Wang Songhu, Zheng Pengpeng, Liu Yongsheng, Tang Xiaofeng, Wang Lihuan
Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China.
School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
Int J Biol Macromol. 2025 Jul;318(Pt 4):145287. doi: 10.1016/j.ijbiomac.2025.145287. Epub 2025 Jun 16.
Plants have evolved intricate regulatory mechanisms to balance growth and defense. In particular, the UV-damaged DNA-binding protein 1 (DDB1), which can form an E3 ubiquitin ligase with CUL4 (Cullin4-Ring Ligase, CRL4), is widely involved in plant growth and response to adversity. The tomato spontaneous SlDDB1-defective high pigment 1 (hp1) mutant manifests significantly increased plastid level and pigments accumulation, but the underlying molecular mechanism remains unclear. Here we report the isolation and characterization of two novel SlDDB1-interacting proteins, SlFtsZ2-1 and SlFtsZ2-2, identified by a yeast two-hybrid assay. They showed constitutive expression patterns and chloroplast localizations. CRISPR/Cas9 knockout uncovered a functional redundancy between SlFtsZ2-1 and SlFtsZ2-2 since only their double knockout mutant displayed significantly decreased plastid level and fruit nutrient accumulation. The interactions between the SlDDB1/SlCUL4 and SlFtsZ2-1/SlFtsZ2-2 within chloroplasts were subsequently validated through co-immunoprecipitation and fluorescence-based assays. Furthermore, biochemical and molecular analyses demonstrated that both SlFtsZ2-1/SlFtsZ2-2 proteins are targeted for ubiquitination and degradation by the CRL4 E3 ligase complex, uncovering a previously unknown role of CRL4 in plastid proteostasis. Collectively, our findings elucidate a novel regulatory module, SlCUL4-SlDDB1-SlFtsZ2, which is distinct from the existing chloroplast-associated protein degradation (CHLORAD) pathway. This module plays a pivotal role in the precise control of SlFtsZ2 protein homeostasis, thereby influencing the plastid level and fruit quality in tomato. This study provides a mechanistic foundation for improving crop nutrient content through ubiquitination pathway manipulation and indicates potential agricultural applications in fruit quality regulation.
植物已经进化出复杂的调控机制来平衡生长和防御。特别是紫外线损伤DNA结合蛋白1(DDB1),它可以与CUL4(Cullin4-环连接酶,CRL4)形成E3泛素连接酶,广泛参与植物生长和逆境响应。番茄自发的SlDDB1缺陷型高色素1(hp1)突变体表现出质体水平和色素积累显著增加,但其潜在的分子机制仍不清楚。在这里,我们报告通过酵母双杂交试验鉴定的两种新型SlDDB1相互作用蛋白SlFtsZ2-1和SlFtsZ2-2的分离和表征。它们表现出组成型表达模式和叶绿体定位。CRISPR/Cas9敲除揭示了SlFtsZ2-1和SlFtsZ2-2之间的功能冗余,因为只有它们的双敲除突变体表现出质体水平和果实营养积累显著降低。随后通过免疫共沉淀和基于荧光的试验验证了叶绿体中SlDDB1/SlCUL4与SlFtsZ2-1/SlFtsZ2-2之间的相互作用。此外,生化和分子分析表明,SlFtsZ2-1/SlFtsZ2-2两种蛋白都被CRL4 E3连接酶复合物靶向泛素化和降解,揭示了CRL4在质体蛋白质稳态中以前未知的作用。总的来说,我们的研究结果阐明了一个新的调控模块SlCUL4-SlDDB1-SlFtsZ2,它不同于现有的叶绿体相关蛋白降解(CHLORAD)途径。该模块在精确控制SlFtsZ2蛋白稳态中起关键作用,从而影响番茄的质体水平和果实品质。本研究为通过泛素化途径操纵提高作物营养含量提供了机制基础,并指出了在果实品质调控中的潜在农业应用。