文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习的MRI影像组学可预测低级别胶质瘤患者的IL18表达及总生存期。

Machine learning-based MRI radiomics predict IL18 expression and overall survival of low-grade glioma patients.

作者信息

Zhang Zhe, Xiao Yao, Liu Jun, Xiao Feng, Zeng Jie, Zhu Hong, Tu Wei, Guo Hua

机构信息

Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

Institute of Neuroscience, Nanchang University, Jiangxi, China.

出版信息

NPJ Precis Oncol. 2025 Jun 19;9(1):196. doi: 10.1038/s41698-025-00966-x.


DOI:10.1038/s41698-025-00966-x
PMID:40533462
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12177085/
Abstract

Interleukin-18 has broad immune regulatory functions. Genomic data and enhanced Magnetic Resonance Imaging data related to LGG patients were downloaded from The Cancer Genome Atlas and Cancer Imaging Archive, and the constructed model was externally validated using hospital MRI enhanced images and clinical pathological features. Radiomic feature extraction was performed using "PyRadiomics", feature selection was conducted using Maximum Relevance Minimum Redundancy and Recursive Feature Elimination methods, and a model was built using the Gradient Boosting Machine algorithm to predict the expression status of IL18. The constructed radiomics model achieved areas under the receiver operating characteristic curve of 0.861, 0.788, and 0.762 in the TCIA training dataset (n = 98), TCIA validation dataset (n = 41), and external validation dataset (n = 50). Calibration curves and decision curve analysis demonstrated the calibration and high clinical utility of the model. The radiomics model based on enhanced MRI can effectively predict the expression status of IL18 and the prognosis of LGG.

摘要

白细胞介素-18具有广泛的免疫调节功能。从癌症基因组图谱和癌症影像存档库下载了与低级别胶质瘤(LGG)患者相关的基因组数据和增强磁共振成像数据,并使用医院的MRI增强图像和临床病理特征对构建的模型进行了外部验证。使用“PyRadiomics”进行放射组学特征提取,使用最大相关最小冗余和递归特征消除方法进行特征选择,并使用梯度提升机算法构建模型以预测IL18的表达状态。构建的放射组学模型在TCIA训练数据集(n = 98)、TCIA验证数据集(n = 41)和外部验证数据集(n = 50)中的受试者操作特征曲线下面积分别为0.861、0.788和0.762。校准曲线和决策曲线分析证明了该模型的校准和高临床实用性。基于增强MRI的放射组学模型可以有效预测IL18的表达状态和LGG的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33da/12177085/b852ec983b96/41698_2025_966_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33da/12177085/f4138cfc1fad/41698_2025_966_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33da/12177085/b1807a372d0d/41698_2025_966_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33da/12177085/8758fd97c807/41698_2025_966_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33da/12177085/96c310f187a0/41698_2025_966_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33da/12177085/7b4e6e7275dc/41698_2025_966_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33da/12177085/c72eff4cd832/41698_2025_966_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33da/12177085/b852ec983b96/41698_2025_966_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33da/12177085/f4138cfc1fad/41698_2025_966_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33da/12177085/b1807a372d0d/41698_2025_966_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33da/12177085/8758fd97c807/41698_2025_966_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33da/12177085/96c310f187a0/41698_2025_966_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33da/12177085/7b4e6e7275dc/41698_2025_966_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33da/12177085/c72eff4cd832/41698_2025_966_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33da/12177085/b852ec983b96/41698_2025_966_Fig7_HTML.jpg

相似文献

[1]
Machine learning-based MRI radiomics predict IL18 expression and overall survival of low-grade glioma patients.

NPJ Precis Oncol. 2025-6-19

[2]
From pixels to prognosis: leveraging radiomics and machine learning to predict IDH1 genotype in gliomas.

Neurosurg Rev. 2025-4-29

[3]
Intra- and peritumoral radiomics nomogram based on DCE-MRI for the early prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer.

Front Oncol. 2025-6-4

[4]
Development and validation of a Log odds of negative lymph nodes/T stage ratio-based prognostic model for gastric cancer.

Front Oncol. 2025-6-3

[5]
Prediction of Insulin Resistance in Nondiabetic Population Using LightGBM and Cohort Validation of Its Clinical Value: Cross-Sectional and Retrospective Cohort Study.

JMIR Med Inform. 2025-6-13

[6]
CT-Based Machine Learning Radiomics Analysis to Diagnose Dysthyroid Optic Neuropathy.

Semin Ophthalmol. 2025-7

[7]
Preoperative prediction of HER2 expression and sentinel lymph node status in breast cancer using a mammography radiomics model.

Front Oncol. 2025-6-4

[8]
Generalizable model to predict new or progressing compression fractures in tumor-infiltrated thoracolumbar vertebrae in an all-comer population.

J Neurosurg Spine. 2025-6-20

[9]
Development of a Machine Learning-Based Predictive Model for Postoperative Delirium in Older Adult Intensive Care Unit Patients: Retrospective Study.

J Med Internet Res. 2025-6-19

[10]
Habitat-Based Radiomics for Revealing Tumor Heterogeneity and Predicting Residual Cancer Burden Classification in Breast Cancer.

Clin Breast Cancer. 2025-7

本文引用的文献

[1]
Targeting IDH in Low-Grade Glioma.

N Engl J Med. 2023-8-17

[2]
Roles of macrophages in tumor development: a spatiotemporal perspective.

Cell Mol Immunol. 2023-9

[3]
Association of MGMT Promoter Methylation With Survival in Low-grade and Anaplastic Gliomas After Alkylating Chemotherapy.

JAMA Oncol. 2023-7-1

[4]
The prognostic value and immune correlation of IL18 expression and promoter methylation in renal cell carcinoma.

Clin Epigenetics. 2023-1-28

[5]
Classification prediction of pancreatic cystic neoplasms based on radiomics deep learning models.

BMC Cancer. 2022-11-29

[6]
Role of MRI-Derived Radiomics Features in Determining Degree of Tumor Differentiation of Hepatocellular Carcinoma.

Diagnostics (Basel). 2022-9-30

[7]
Origin, activation, and targeted therapy of glioma-associated macrophages.

Front Immunol. 2022

[8]
P spin-lattice and singlet order relaxation mechanisms in pyrophosphate studied by isotopic substitution, field shuttling NMR, and molecular dynamics simulation.

Phys Chem Chem Phys. 2022-10-12

[9]
Multicenter clinical radiomics-integrated model based on [F]FDG PET and multi-modal MRI predict ATRX mutation status in IDH-mutant lower-grade gliomas.

Eur Radiol. 2023-2

[10]
AI/ML-driven advances in untargeted metabolomics and exposomics for biomedical applications.

Cell Rep Phys Sci. 2022-7-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索