Suppr超能文献

帕金森病中模拟和优化深部脑刺激以改善步态:基于神经生理学见解的个性化治疗

Modeling and optimizing deep brain stimulation to enhance gait in Parkinson's disease: personalized treatment with neurophysiological insights.

作者信息

Fekri Azgomi Hamid, Louie Kenneth H, Bath Jessica E, Presbrey Kara N, Balakid Jannine P, Marks Jacob H, Wozny Thomas A, Galifianakis Nicholas B, San Luciano Marta, Little Simon, Starr Philip A, Wang Doris D

机构信息

Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.

Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA.

出版信息

NPJ Parkinsons Dis. 2025 Jun 18;11(1):173. doi: 10.1038/s41531-025-00990-5.

Abstract

The effects of deep brain stimulation (DBS) on gait in Parkinson's disease (PD) are variable due to challenges in gait assessment and limited understanding of stimulation parameters' impacts on neural activity. We developed a data-driven approach to identify optimal DBS parameters to improve gait and uncover neurophysiological signatures of gait enhancement. Field potentials from the globus pallidus (GP) and motor cortex were recorded in three patients with PD (PwP) using implanted bidirectional neural stimulators during overground walking. We developed a Walking Performance Index (WPI) to assess gait metrics. DBS parameters were systematically varied to study their impacts on gait and neural dynamics. We were able to predict and identify personalized DBS settings that improved the WPI using a Gaussian Process Regressor. Improved walking correlated with reduced pallidal beta power during key gait phases. These findings, along with identified person-specific neural spectral biomarkers, underscore the importance of personalized, data-driven interventions for gait enhancement in PwP. ClinicalTrials.gov registration: NCT-03582891.

摘要

由于步态评估存在挑战以及对刺激参数对神经活动影响的理解有限,深部脑刺激(DBS)对帕金森病(PD)患者步态的影响存在差异。我们开发了一种数据驱动的方法,以确定改善步态的最佳DBS参数,并揭示步态增强的神经生理特征。在三名帕金森病患者(PwP)地面行走期间,使用植入的双向神经刺激器记录苍白球(GP)和运动皮层的场电位。我们开发了一种步行性能指数(WPI)来评估步态指标。系统地改变DBS参数,以研究其对步态和神经动力学的影响。我们能够使用高斯过程回归器预测并识别出改善WPI的个性化DBS设置。在关键步态阶段,步行改善与苍白球β功率降低相关。这些发现以及确定的个体特异性神经频谱生物标志物,强调了个性化、数据驱动的干预措施对改善PwP步态的重要性。ClinicalTrials.gov注册编号:NCT-03582891。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/526f/12177069/d21d72d9ba7e/41531_2025_990_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验