Suppr超能文献

基于连续变化检测与分类算法的缅甸30年红树林干扰分析

Mangrove disturbance analysis over 30 years in Myanmar based on continuous change detection and classification algorithm.

作者信息

Xia Yifei, Liu Kai, Zhu Yuanhui, Wen Xin, Cao Jingjing

机构信息

Guangdong Key Laboratory for Urbanization and GeoSimulation, Provincial Engineering Research Center for Public Security and Disaster, School of Geography and Planning, Sun Yat-Sen University, Guangzhou, 510006, China.

Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China.

出版信息

Environ Monit Assess. 2025 Jun 18;197(7):762. doi: 10.1007/s10661-025-14219-8.

Abstract

Myanmar, recognized as a hotspot for global mangrove deforestation, has experienced rapid loss of these critical ecosystems due to extensive human activity and natural disturbances. However, limited research has addressed the long-term, detailed dynamics of mangrove disturbances in Myanmar. To bridge this gap, this study applied the continuous change detection and classification (CCDC) algorithm on Landsat images within the Google Earth Engine (GEE) platform to analyze mangrove disturbances (disturbance frequency, maximum disturbance years, and maximum disturbance degrees) and driving forces in Myanmar over 30 a (1990-2020). Our findings reveal that (1) the CCDC algorithm effectively detects mangrove disturbances with an overall recognition accuracy of 85.50%. (2) Approximately 80% of the disturbed mangroves in Myanmar experienced disturbances fewer than three times, with areas experiencing severe disturbance being the smallest. The maximum disturbance areas of mangroves in Myanmar showed an overall increasing trend from 1990, followed by a decline and then a renewed increase. (3) The expansion of rice cultivation disturbed many mangroves in Ayeyarwady and Rakhine, and Cyclone Nargis also disturbed mangroves in Ayeyarwady. These findings on mangrove disturbance's spatial and temporal patterns offer essential insights for informed management and conservation strategies for Myanmar's mangrove resources.

摘要

缅甸被公认为全球红树林砍伐的热点地区,由于广泛的人类活动和自然干扰,这些关键生态系统迅速减少。然而,针对缅甸红树林干扰的长期详细动态的研究有限。为了填补这一空白,本研究在谷歌地球引擎(GEE)平台上对陆地卫星图像应用连续变化检测与分类(CCDC)算法,分析缅甸30年(1990—2020年)间的红树林干扰情况(干扰频率、最大干扰年份和最大干扰程度)及其驱动因素。我们的研究结果表明:(1)CCDC算法能有效检测红树林干扰,总体识别准确率达85.50%。(2)缅甸约80%受干扰的红树林经历的干扰少于三次,严重干扰区域面积最小。缅甸红树林的最大干扰面积自1990年起总体呈上升趋势,随后下降,之后又再度上升。(3)水稻种植面积的扩大干扰了伊洛瓦底江和若开邦的许多红树林,纳尔吉斯气旋也对伊洛瓦底江的红树林造成了干扰。这些关于红树林干扰时空模式的研究结果为缅甸红树林资源的明智管理和保护策略提供了重要见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验