Taqieddin Amir, Sarrouf Stephanie, Ehsan Muhammad Fahad, Alshawabkeh Akram N
Department of Mechanical & Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States.
Department of Civil & Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States.
ACS ES T Water. 2025 May 7;5(6):3439-3449. doi: 10.1021/acsestwater.5c00247. eCollection 2025 Jun 13.
Granular activated carbon (GAC) has proven to be a highly effective material for electrochemical water treatment due to its large surface area and porous structure. This study presents a multiscale investigation combining molecular dynamics (MD) simulations, continuum-scale modeling, and experimental validation to understand how the GAC structure influences water adsorption and reactivity. MD simulations show that highly porous GAC (porosity up to 0.55) adsorbs up to 1.2 kg of water per kg of carbon, with an adsorption energy reaching 880 kJ/kg. Continuum modeling using the coupled level-set volume-of-fluid (CLSVOF) method demonstrates that high-porosity GAC reduces surface blockage by promoting bubble mobility. Experimental results confirm these findings: unpressed GAC electrodes (i.e., larger porosity) with a lower density (∼0.1997 g/cm) generated up to 180 ppm of hydroxyl radicals, compared to 100 ppm from pressed electrodes with equal mass. These findings indicate that optimizing GAC porosity and particle size enhances both water transport and reactive oxygen species (ROS) generation, hence improving the treatment performance. This integrated modeling and experimental framework highlight structure-function relationships in GAC electrodes and inform the design of scalable, high-efficiency systems. This work focuses on water interactions with GAC, opening doors for future studies on pollutant-specific reactivity in the electrochemical water treatment system.
颗粒活性炭(GAC)因其大表面积和多孔结构,已被证明是一种用于电化学水处理的高效材料。本研究进行了多尺度研究,结合分子动力学(MD)模拟、连续尺度建模和实验验证,以了解GAC结构如何影响水的吸附和反应性。MD模拟表明,高孔隙率的GAC(孔隙率高达0.55)每千克碳可吸附高达1.2千克的水,吸附能达到880千焦/千克。使用耦合水平集流体体积(CLSVOF)方法的连续建模表明,高孔隙率的GAC通过促进气泡移动性减少了表面堵塞。实验结果证实了这些发现:密度较低(约0.1997克/立方厘米)的未压制GAC电极(即孔隙率较大)可产生高达180 ppm的羟基自由基,而等质量的压制电极产生的羟基自由基为100 ppm。这些发现表明,优化GAC的孔隙率和粒径可增强水的传输和活性氧(ROS)的生成,从而提高处理性能。这种综合建模和实验框架突出了GAC电极中的结构-功能关系,并为可扩展的高效系统设计提供了依据。这项工作聚焦于水与GAC之间的相互作用,为未来关于电化学水处理系统中特定污染物反应性的研究打开了大门。