学龄儿童单色结膜照片中贫血特征的影像组学识别
Radiomic identification of anemia features in monochromatic conjunctiva photographs in school-age children.
作者信息
Hong Shaun G, Park Sang Mok, Kwon Semin, Sakthivel Haripriya, Leem Jung Woo, Steinhubl Steven R, Ngiruwonsanga Pascal, Mangara Jean-Louis N, Twizere Célestin, Kim Young L
机构信息
Purdue University, Weldon School of Biomedical Engineering, West Lafayette, Indiana, United States.
Purdue University, Regenstrief Center for Healthcare Engineering, West Lafayette, Indiana, United States.
出版信息
Biophotonics Discov. 2025 Apr;2(2). doi: 10.1117/1.bios.2.2.022303. Epub 2025 Apr 15.
SIGNIFICANCE
Anemia remains a substantial global health challenge. Delayed detection often leads to various health complications. In school-age children, anemia can impair both cognitive and physical development. Timely detection is particularly critical for this vulnerable population as effective interventions are available even in resource-limited settings.
AIM
Most existing methods for assessing conjunctiva paleness or redness in anemia detection rely on colorimetric analyses or spectral imaging, which require sophisticated color processing methods or specialized equipment. We introduce an alternative that takes advantage of purely spatial and textural characteristics of the conjunctiva microvasculature for anemia detection.
APPROACH
Radiomics, an emerging machine learning approach for conventional medical imaging, is applied to conjunctiva photos to analyze morphological alterations in the microvasculature beyond direct visualization. Radiomic analyses are conducted on 12,441 palpebral and 12,375 bulbar conjunctiva photos, captured using three different smartphone models from 565 children aged 5 to 15 years.
RESULTS
Spatial and textural features extracted from the palpebral and bulbar conjunctivae are significantly associated with anemia status in school-age children, demonstrating their potential as biomarkers of anemia.
CONCLUSIONS
Instead of relying on color-based or spectral analyses of pallor in the conjunctiva, the proposed framework lays the groundwork for simplifying the hardware and algorithmic requirements of point-of-care, noninvasive anemia screening in sub-Saharan Africa and other resource-limited settings.
意义
贫血仍然是一项重大的全球健康挑战。检测延迟往往会导致各种健康并发症。在学龄儿童中,贫血会损害认知和身体发育。及时检测对于这一弱势群体尤为关键,因为即使在资源有限的环境中也有有效的干预措施。
目的
贫血检测中评估结膜苍白或发红的大多数现有方法依赖于比色分析或光谱成像,这需要复杂的颜色处理方法或专门的设备。我们引入了一种利用结膜微血管纯粹的空间和纹理特征进行贫血检测的替代方法。
方法
放射组学是一种用于传统医学成像的新兴机器学习方法,应用于结膜照片,以分析微血管形态学改变,而无需直接可视化。对565名5至15岁儿童使用三种不同智能手机型号拍摄的12441张睑结膜和12375张球结膜照片进行放射组学分析。
结果
从睑结膜和球结膜提取的空间和纹理特征与学龄儿童的贫血状况显著相关,证明了它们作为贫血生物标志物的潜力。
结论
所提出的框架不是依赖于对结膜苍白进行基于颜色或光谱的分析,而是为简化撒哈拉以南非洲和其他资源有限环境中即时护理、无创贫血筛查的硬件和算法要求奠定了基础。