Pathak Spandan, Peña-Flores Norma, Alvarez Phillip, Feeley Jenna, Ghodssi Reza, Losert Wolfgang, Herberholz Jens
Institute for Physical Science and Technology, University of Maryland at College Park, College Park, MD, USA.
Neuroscience and Cognitive Science Program, University of Maryland at College Park, College Park, MD, USA.
R Soc Open Sci. 2025 Jun 18;12(6):250094. doi: 10.1098/rsos.250094. eCollection 2025 Jun.
Motility is a critical function of the gastrointestinal (GI) system governed by neurogenic and myogenic processes. Due to its major role in maintaining homeostasis, overlapping mechanisms have evolved for its adaptive operation including modulation by the central nervous system (CNS), enteric nervous system (ENS) and intrinsic pacemaker cells. Our understanding of the modulatory mechanisms that underlie intestinal motility remains incomplete. Crayfish provide a tractable model to study the interplay between CNS and neurochemical regulation of GI motor patterns. Our study investigated the effects of CNS denervation and exogenously applied serotonin (5-HT) on crayfish hindgut motility. Multiscale spatial measurements showed stable motility parameters throughout 90 min of control conditions. Denervation, i.e. separating the gut from the CNS, resulted in a significant decrease in the magnitude and synchrony of hindgut contractions, while preserving the underlying frequency and directional bias of the waves. Subsequent application of 5-HT to the denervated preparation enhanced motility but disrupted spatiotemporal coordination. Treatment with TTX (a sodium channel blocker) had minor impacts on motility metrics, indicating a prominent role of myogenic mechanisms. Our model provides a multiscale analysis framework to dissect CNS and interrelated neurochemistry contributions to GI motor dynamics.
蠕动是胃肠(GI)系统的一项关键功能,受神经源性和肌源性过程支配。由于其在维持体内平衡中的主要作用,已经进化出重叠机制以实现其适应性运作,包括中枢神经系统(CNS)、肠神经系统(ENS)和内在起搏细胞的调节。我们对肠道蠕动潜在调节机制的理解仍不完整。小龙虾提供了一个易于处理的模型,用于研究CNS与GI运动模式的神经化学调节之间的相互作用。我们的研究调查了CNS去神经支配和外源性应用血清素(5-HT)对小龙虾后肠蠕动的影响。多尺度空间测量显示,在90分钟的对照条件下,蠕动参数稳定。去神经支配,即将肠道与CNS分离,导致后肠收缩的幅度和同步性显著降低,同时保留了波的潜在频率和方向偏差。随后将5-HT应用于去神经支配的制剂增强了蠕动,但破坏了时空协调性。用TTX(一种钠通道阻滞剂)处理对蠕动指标影响较小,表明肌源性机制起主要作用。我们的模型提供了一个多尺度分析框架,以剖析CNS和相关神经化学对GI运动动力学的贡献。