Suppr超能文献

一种用于植物脱水监测的生成式人工智能辅助压电微机电系统超声设备。

A Generative AI-Assisted Piezo-MEMS Ultrasound Device for Plant Dehydration Monitoring.

作者信息

Roy Kaustav, Sim Darren, Wang Luwei, Zhang Zixuan, Guo Xinge, Zhu Yao, Swarup Sanjay, Lee Chengkuo

机构信息

Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore.

Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117583, Singapore.

出版信息

Adv Sci (Weinh). 2025 Aug;12(32):e04954. doi: 10.1002/advs.202504954. Epub 2025 Jun 19.

Abstract

Plant health, closely tied to hydration, has a direct impact on agricultural productivity, making the monitoring of leaf water content essential. Current devices, however, are often invasive, bulky, slow, power-inefficient, Complementary Metal-Oxide-Semiconductor (CMOS)-incompatible, and unsuitable for large-scale, re-usable outdoor sensor networks. Utilizing micro-electromechanical systems (MEMS) fabrication enables wafer-scale miniaturization and precise control of ultrasound transducers, thereby enhancing sensitivity while significantly reducing power and cost. This work introduces the CMOS-compatible, plant-leaf attachable piezo-MEMS ultrasound device (PMUT-Leaf-PMUT, PLP) for real-time dynamic moisture monitoring and rapid one-shot measurement of relative water content (RWC). Notably, the PLP is reattachable to pre-calibrated plant leaves, enhancing reusability and reducing electronic waste. Employing piezoelectric micromachined ultrasound transducers (PMUTs) fabricated via piezoelectric over silicon-on-nothing (PSON), the device non-invasively monitors hydration across diverse cultivars with a 70% relative water content (RWC) detection range. Generative deep learning using a conditional variational autoencoder (CVAE) translates electrical signals to precise hydration measurements, achieving an RWC root-mean-square error of 1.25%. The deployment of this generative AI-assisted PLP system directly links plant responses to environmental shifts, representing a significant advancement in precision plant health management and irrigation practices, thereby substantially improving agricultural efficiency and promoting environmental conservation.

摘要

植物健康与水分密切相关,直接影响农业生产力,因此监测叶片含水量至关重要。然而,目前的设备往往具有侵入性、体积大、速度慢、功率效率低、与互补金属氧化物半导体(CMOS)不兼容,且不适用于大规模、可重复使用的户外传感器网络。利用微机电系统(MEMS)制造技术可实现晶圆级小型化,并精确控制超声换能器,从而提高灵敏度,同时显著降低功耗和成本。这项工作介绍了一种与CMOS兼容、可附着在植物叶片上的压电MEMS超声设备(PMUT-Leaf-PMUT,PLP),用于实时动态水分监测和相对含水量(RWC)的快速单次测量。值得注意的是,PLP可重新附着到预先校准的植物叶片上,提高了可重复使用性并减少了电子垃圾。该设备采用通过无硅上压电(PSON)制造的压电微机械超声换能器(PMUT),可在70%的相对含水量(RWC)检测范围内对不同品种的植物进行非侵入性水分监测。使用条件变分自动编码器(CVAE)的生成式深度学习将电信号转换为精确的水分测量值,相对含水量(RWC)的均方根误差达到1.25%。这种生成式人工智能辅助的PLP系统的部署直接将植物反应与环境变化联系起来,代表了精准植物健康管理和灌溉实践的重大进步,从而大幅提高农业效率并促进环境保护。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验