Vázquez-Rodríguez Benjamín, Heredia-Olea Erick, Alamilla-Morales Adriana, Pérez-Carrillo Esther, Perez-Perez David A, Serna-Saldívar Sergio O
Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Avenida Eugenio Garza Sada, Sur, Monterrey, 2501, CP 64849, N.L, México.
Bioresour Bioprocess. 2025 Jun 19;12(1):65. doi: 10.1186/s40643-025-00905-5.
Blasting extrusion pretreatment (BEP) was evaluated for obtaining sugar enriched saccharified extracts from sweet sorghum bagasse (SSB) for ethanol fermentation. A factorial design was used for studying the effect of last barrel zone temperature (T) and screw configuration (SC) on carbohydrate release and extraction yield. The experiment with a higher total carbohydrate release was selected (BEP + ES) for a posterior 72 h fermentation and compared against enzymatic saccharified (ES) SSB without using BEP. Fermentation was performed at 28 °C, pH 5.0 and 10% of solids loading (BEP + ES and ES) using the stress tolerant yeast ATCC 203,081 for ethanol production. In BEP experiments, screw configuration with one polygon element and a shear zone consisting of 7 reverse elements operating at a T of 190 °C resulted in the highest carbohydrate release after enzymatic saccharification, achieving a 3-fold increase compared to control. BEP enhanced carbohydrate availability and lignocellulosic biomass degradation activity (enzymatic saccharification and fermentation). Ethanol production usining with BEP + ES was 8.65-fold higher than the ES control after 72-h fermentation. Higher initial total carbohydrate (3-fold) and fermentable amino nitrogen (FAN) in BEP + ES (12.41-fold higher) improved SSB fermentability and thus ethanol yield. Glucose was fully consumed in the BEP + ES fermentation, while 91.62% was consumed in the ES experiment. Xylose and mannose/arabinose consumption varied by treatment, but displayed the ability to co-utilize pentoses and hexoses during fermentation. Compared to previous traditional twin-screw extrusion and ES, BEP enhanced SSB carbohydrate release during enzymatic saccharification, and carbohydrate consumption and ethanol production during fermentation.
为了从甜高粱渣(SSB)中获得富含糖分的糖化提取物用于乙醇发酵,对爆破挤压预处理(BEP)进行了评估。采用析因设计研究最后一个机筒区温度(T)和螺杆配置(SC)对碳水化合物释放和提取率的影响。选择总碳水化合物释放量较高的实验(BEP + ES)进行后续72小时发酵,并与未使用BEP的酶糖化(ES)SSB进行比较。使用耐胁迫酵母ATCC 203,081在28°C、pH 5.0和10%的固体负荷(BEP + ES和ES)下进行乙醇生产发酵。在BEP实验中,具有一个多边形元件和由7个反向元件组成的剪切区、在190°C的温度下运行的螺杆配置,在酶糖化后碳水化合物释放量最高,与对照相比增加了3倍。BEP提高了碳水化合物的可利用性和木质纤维素生物质降解活性(酶糖化和发酵)。72小时发酵后,使用BEP + ES的乙醇产量比ES对照高8.65倍。BEP + ES中较高的初始总碳水化合物(3倍)和可发酵氨基氮(FAN,高12.41倍)提高了SSB的发酵能力,从而提高了乙醇产量。在BEP + ES发酵中葡萄糖被完全消耗,而在ES实验中消耗了91.62%。木糖和甘露糖/阿拉伯糖的消耗因处理而异,但在发酵过程中显示出共利用戊糖和己糖的能力。与先前的传统双螺杆挤压和ES相比,BEP提高了酶糖化过程中SSB碳水化合物的释放,以及发酵过程中碳水化合物的消耗和乙醇产量。