Suppr超能文献

从频率到时间:三个简单步骤实现轻量级高性能运动想象解码。

From Frequency to Temporal: Three Simple Steps Achieve Lightweight High-Performance Motor Imagery Decoding.

作者信息

Li Yuan, Su Diwei, Yang Xiaonan, Wang Xiangcun, Zhao Hongxi, Zhang Jiacai

出版信息

IEEE Trans Biomed Eng. 2025 Jun 19;PP. doi: 10.1109/TBME.2025.3579528.

Abstract

OBJECTIVE

To address the challenges of high data noise and substantial model computational complexity in Electroencephalography (EEG)-based motor imagery decoding, this study aims to develop a decoding method with both high accuracy and low computational cost.

METHODS

First, frequency domain analysis was performed to reveal the frequency modeling patterns of deep learning models. Utilizing prior knowledge from brain science regarding the key frequency bands for motor imagery, we adjusted the convolution kernels and pooling sizes of EEGNet to focus on effective frequency bands. Subsequently, a residual network was introduced to preserve high-frequency detailed features. Finally, temporal convolution modules were used to deeply capture temporal dependencies, significantly enhancing feature discriminability.

RESULTS

Experiments were conducted on the BCI Competition IV 2a and 2b datasets. Our method achieved average classification accuracies of 86.23% and 86.75% respectively, surpassing advanced models like EEG-Conformer and EEG-TransNet. Meanwhile, the Multiply-accumulate operations (MACs) were 27.16M, a reduction of over 50% compared to the comparison models, and the Forward/Backward Pass Size was 14.33MB.

CONCLUSION

By integrating prior knowledge from brain science with deep learning techniques-specifically frequency domain analysis, residual networks, and temporal convolutions-it is possible to effectively improve the accuracy of EEG motor imagery decoding while substantially reducing model computational complexity.

SIGNIFICANCE

This paper employs the simplest and most fundamental techniques in its design, highlighting the critical role of brain science knowledge in model development. The proposed method demonstrates broad application potential.

摘要

目的

为应对基于脑电图(EEG)的运动想象解码中高数据噪声和大量模型计算复杂性的挑战,本研究旨在开发一种兼具高精度和低计算成本的解码方法。

方法

首先,进行频域分析以揭示深度学习模型的频率建模模式。利用脑科学中关于运动想象关键频段的先验知识,我们调整了EEGNet的卷积核和池化大小,以专注于有效频段。随后,引入残差网络以保留高频细节特征。最后,使用时间卷积模块深度捕捉时间依赖性,显著增强特征可辨别性。

结果

在BCI竞赛IV 2a和2b数据集上进行了实验。我们的方法分别实现了86.23%和86.75%的平均分类准确率,超过了EEG-Conformer和EEG-TransNet等先进模型。同时,乘积累加运算(MACs)为27.16M,与比较模型相比减少了50%以上,前向/后向传递大小为14.33MB。

结论

通过将脑科学的先验知识与深度学习技术(特别是频域分析、残差网络和时间卷积)相结合,可以有效提高EEG运动想象解码的准确率,同时大幅降低模型计算复杂性。

意义

本文在设计中采用了最简单和最基本的技术,突出了脑科学知识在模型开发中的关键作用。所提出的方法具有广泛的应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验