Suppr超能文献

EA-EEG:一种用于高效运动想象脑电分类的新型模型,具有白化和多尺度特征整合功能。

EA-EEG: a novel model for efficient motor imagery EEG classification with whitening and multi-scale feature integration.

作者信息

Miao Yutao, Li Kaijie, Zhao Wenhao, Zhang Yushi

机构信息

Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing, 100081 China.

School of Information Engineering, Minzu University of China, Beijing, 100081 China.

出版信息

Cogn Neurodyn. 2025 Dec;19(1):94. doi: 10.1007/s11571-025-10278-2. Epub 2025 Jun 17.

Abstract

Electroencephalography (EEG) is a non-invasive technique widely used in neuroscience and brain-computer interfaces (BCI) due to its high temporal resolution. In motor imagery EEG (MI-EEG) tasks, EEG signals reflect movement-related brain activity, making them ideal for BCI control. However, the non-stationary nature of MI-EEG signals poses significant challenges for classification, as frequency characteristics vary across tasks and individuals. Traditional preprocessing methods, such as bandpass filtering and standardization, may struggle to adapt to these variations, potentially limiting classification performance. To address this issue, this study introduces EA-EEG, an improved MI-EEG classification model that incorporates whitening as a preprocessing step to reduce channel correlation and enhance the model feature extraction ability. EA-EEG further leverages a multi-scale pooling strategy, combining convolutional networks and root mean square pooling to extract key spatial and temporal features, and applies prototype-based classification to improve MI-EEG classification performance. Experiments on the BCI4-2A and BCI4-2B datasets demonstrate that EA-EEG achieves state-of-the-art performance, with 85.33% accuracy (Kappa = 0.804) on BCI4-2A and 88.05% accuracy (Kappa = 0.761) on BCI4-2B, surpassing existing approaches. These results confirm EA-EEG's effectiveness in handling non-stationary MI-EEG signals, demonstrating its potential for robust BCI applications, including rehabilitation, prosthetic control, and cognitive monitoring.

摘要

脑电图(EEG)是一种非侵入性技术,因其具有高时间分辨率而在神经科学和脑机接口(BCI)中被广泛应用。在运动想象脑电图(MI-EEG)任务中,EEG信号反映了与运动相关的大脑活动,使其成为BCI控制的理想选择。然而,MI-EEG信号的非平稳特性给分类带来了重大挑战,因为频率特征在不同任务和个体之间存在差异。传统的预处理方法,如带通滤波和标准化,可能难以适应这些变化,从而可能限制分类性能。为了解决这个问题,本研究引入了EA-EEG,这是一种改进的MI-EEG分类模型,它将白化作为预处理步骤,以减少通道相关性并增强模型特征提取能力。EA-EEG进一步利用多尺度池化策略,结合卷积网络和均方根池化来提取关键的空间和时间特征,并应用基于原型的分类来提高MI-EEG分类性能。在BCI4-2A和BCI4-2B数据集上的实验表明,EA-EEG取得了最优性能,在BCI4-2A上的准确率为85.33%(Kappa = 0.804),在BCI4-2B上的准确率为88.05%(Kappa = 0.761),超过了现有方法。这些结果证实了EA-EEG在处理非平稳MI-EEG信号方面的有效性,展示了其在包括康复、假肢控制和认知监测等稳健BCI应用中的潜力。

相似文献

本文引用的文献

9
EEG Conformer: Convolutional Transformer for EEG Decoding and Visualization.脑电图适配模型:用于脑电图解码与可视化的卷积变换器
IEEE Trans Neural Syst Rehabil Eng. 2023;31:710-719. doi: 10.1109/TNSRE.2022.3230250. Epub 2023 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验