Lou Yu, Wang Haoran, Zhou Zhicong, Zeng Miao, Yan Zhongliang, Yang Xueying, Fu Pengfei, Huang Arui, Li Dong, Wu Tom, Bai Yang, Cheng Hui-Ming
Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, StateKey Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China.
Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen 518107, P. R. China.
ACS Nano. 2025 Jul 1;19(25):23151-23161. doi: 10.1021/acsnano.5c04461. Epub 2025 Jun 19.
Pure-red perovskite light-emitting diodes (PeLEDs) are critical for next-generation displays, while existing systems based on mixed Br/I compositions, quasi-2D phases, or colloidal 0D quantum dots are still facing challenges in fulfilling the requirements of the Recommendation BT.2020 (Rec. 2020) red standard. CsPbI nanoplatelets (NPLs) whose bandgap depends on thickness-size are a promising candidate for pure-red light-emitting emitters, but their practical use as LEDs has been hampered by the metastability of the emissive CsPbI cubic phase. Here, we report the synthesis of stabilized γ-CsPbI NPLs with a tailored surface coordination by incorporating a trace amount of dimethyl sulfoxide (DMSO) and '-dimethylpropyleneurea (DMPU) into the precursor. These ligands selectively coordinate with undercoordinated Pb sites in [PbI] octahedra through Lewis acid-base interactions, redistributing the electron density at Pb centers and inducing lattice distortion by the Pb-I-Pb bond angle torsion, thereby stabilizing the γ-phase. The complementary effect of the polarities and the coordination capacities of DMSO/DMPU guide anisotropic growth along the [100] direction, enabling atomic-precision control of the NPL thickness (4 monolayers) to tailor the quantum-confined pure-red emission. The resultant pure-red PeLEDs achieve Commission Internationale de l'Eclairage (CIE) coordinates of (0.708, 0.292), 100% compliance with the Rec. 2020 specification, as well as an external quantum efficiency (EQE) of over 12% and a superior operational lifetime with a half-lifetime () of 360 min, representing the highest reported values for CsPbI NPL-based PeLEDs.
纯红色钙钛矿发光二极管(PeLEDs)对下一代显示器至关重要,而现有的基于混合Br/I成分、准二维相或胶体零维量子点的系统在满足BT.2020建议(Rec. 2020)红色标准要求方面仍面临挑战。带隙取决于厚度尺寸的CsPbI纳米片(NPLs)是纯红色发光发射器的一个有前途的候选者,但它们作为发光二极管的实际应用受到发射性CsPbI立方相亚稳性的阻碍。在这里,我们报告了通过将痕量的二甲基亚砜(DMSO)和N,N'-二甲基丙烯脲(DMPU)掺入前驱体中,合成具有定制表面配位的稳定γ-CsPbI NPLs。这些配体通过路易斯酸碱相互作用与[PbI]八面体中配位不足的Pb位点选择性配位,重新分布Pb中心的电子密度,并通过Pb-I-Pb键角扭转引起晶格畸变,从而稳定γ相。DMSO/DMPU的极性和配位能力的互补作用引导沿[100]方向的各向异性生长,实现对NPL厚度(4个单层)的原子级精确控制,以定制量子限制的纯红色发射。所得的纯红色PeLEDs实现了国际照明委员会(CIE)坐标为(0.708, 0.292),100%符合Rec. 2020规范,以及超过12%的外量子效率(EQE)和360分钟的半寿命(t1/2)的优异工作寿命,代表了基于CsPbI NPL的PeLEDs报道的最高值。