Gu Xinrui, Zhang Jingjing, Guo Song, Zhang Yifei, Xu Liangliang, Jin Rongchao, Li Gao
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
J Am Chem Soc. 2025 Jul 2;147(26):22785-22795. doi: 10.1021/jacs.5c04950. Epub 2025 Jun 20.
The electroreduction of nitrate (NO) for sustainable ammonia (NH) production has recently emerged as a green process to solve water contamination and produce valuable chemicals. In this study, we developed Ni@CuFe-LDH composites comprising tiara Ni(SCHCOOH) (Ni) clusters anchored on the edges of 2D CuFe-LDH (LDH: layered double hydroxides) nanosheets via electrostatic interactions. The Ni@CuFe-LDH catalyst exhibits high electrochemical performance in nitrate reduction reaction (NORR). Specifically, the Ni@CuFe-LDH gives rise to an excellent faradaic efficiency of ∼97%, significantly surpassing the ∼73% FE of the pristine CuFe-LDH, with the NH productivity (0.91 mmol mg h) being similar to that of the CuFe-LDH. Mechanistic studies reveal that the superior electrocatalysis of Ni-based catalysts is primarily due to the synergistic interaction between Ni clusters and CuFe-LDH, which alters the rate-determining step (RDS) of the desorption of *NH species (for CuFe-LDH) to the *NO → *NO step (for Ni@CuFe-LDH); this is corroborated by the control experiments of NORR, in situ Raman and infrared spectroscopies, and computational approaches. In all, these efforts push forward the NORR research to study the structure-property relationships from the micro/nano-level to the precise atomic-level.
通过电还原硝酸盐(NO)来可持续生产氨(NH₃)最近已成为一种解决水污染并生产有价值化学品的绿色工艺。在本研究中,我们通过静电相互作用开发了Ni@CuFe-LDH复合材料,该材料由锚定在二维CuFe-LDH(LDH:层状双氢氧化物)纳米片边缘的冠状Ni(SCH₂COOH)₂(Ni)簇组成。Ni@CuFe-LDH催化剂在硝酸盐还原反应(NORR)中表现出高电化学性能。具体而言,Ni@CuFe-LDH产生了约97%的优异法拉第效率,显著超过了原始CuFe-LDH的约73%的法拉第效率,其NH₃产率(0.91 mmol mg⁻¹ h⁻¹)与CuFe-LDH相似。机理研究表明,镍基催化剂的优异电催化作用主要归因于Ni簇与CuFe-LDH之间的协同相互作用,这将NH物种解吸的速率决定步骤(RDS)(对于CuFe-LDH)改变为NO → *NO步骤(对于Ni@CuFe-LDH);NORR的对照实验、原位拉曼光谱和红外光谱以及计算方法证实了这一点。总之,这些努力推动了NORR研究从微观/纳米层面到精确原子层面研究结构-性能关系。