Zhang Tingting, Gu Fang, He Jia Yi, Li Weihua, Han Ruxue, Liu Xinyu, Dai Chan, Qin Zhendong, Zhang Di, Lu Jun, Li Hua
Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
Chromosome Res. 2025 Jun 20;33(1):12. doi: 10.1007/s10577-025-09770-6.
This study aimed to analyze chromosomal arm-level copy number variations (CNVs) in benign diseases, cervical intraepithelial neoplasia (CIN), and cervical cancer (CC) using low-coverage whole genome sequencing (LC-WGS) and evaluate the efficacy of the ultrasensitive chromosomal aneuploidy detector (UCAD) model in distinguishing CC from CIN and benign diseases.
Cervical exfoliated cell specimens from 50 patients were collected for high-risk human papillomavirus(hr-HPV) testing, ThinPrep Cytologic Test (TCT), and CNV detection via LC-WGS. UCAD was employed to analyze chromosomal changes, with validation using WGS data from the National Center for Biotechnology Information(NCBI) database.
Among 50 patients, 8 had benign disease, 3 CIN1, 15 CIN2, 6 CIN2-3, 13 CIN3, and 5 CC. Chromosomal instability was detected in 9 patients (18%): all 5 CC cases, 3 CIN3 cases, and 1 CIN1 case. Gains in 3q were observed in all CC and CIN3 cases with CNVs. UCAD achieved 100% sensitivity and 91.11% specificity in differentiating CC from CIN and benign diseases, outperforming hr-HPV and TCT. The UCAD model was also applied to 5 CC and 1 high-grade squamous intraepithelial lesion (HSIL) cases obtained from the NCBI database, and the findings validated its ability to detect chromosomal aberrations in all cases.
CNV analysis of cervical exfoliated cells shows promise for CC detection, with UCAD demonstrating high accuracy. Further validation in larger cohorts is needed to confirm its clinical utility.
本研究旨在利用低覆盖度全基因组测序(LC-WGS)分析良性疾病、宫颈上皮内瘤变(CIN)和宫颈癌(CC)中的染色体臂水平拷贝数变异(CNV),并评估超灵敏染色体非整倍体检测(UCAD)模型区分CC与CIN及良性疾病的效能。
收集50例患者的宫颈脱落细胞标本,进行高危型人乳头瘤病毒(hr-HPV)检测、薄层液基细胞学检测(TCT)以及通过LC-WGS进行CNV检测。采用UCAD分析染色体变化,并使用来自美国国立生物技术信息中心(NCBI)数据库的WGS数据进行验证。
50例患者中,8例为良性疾病,3例为CIN1,15例为CIN2,6例为CIN2-3,13例为CIN3,5例为CC。9例患者(18%)检测到染色体不稳定:5例CC病例、3例CIN3病例和1例CIN1病例。在所有存在CNV的CC和CIN3病例中均观察到3q增益。在区分CC与CIN及良性疾病方面,UCAD的灵敏度达到100%,特异性达到91.11%,优于hr-HPV和TCT。UCAD模型还应用于从NCBI数据库获得的5例CC和1例高级别鳞状上皮内病变(HSIL)病例,结果验证了其在所有病例中检测染色体畸变的能力。
宫颈脱落细胞的CNV分析在CC检测方面显示出前景,UCAD具有较高的准确性。需要在更大队列中进一步验证以确认其临床实用性。