Suppr超能文献

由智能体引导的人工智能驱动的神经传导研究和肌电图解读与报告(INSPIRE)。

Agent-guided AI-powered interpretation and reporting of nerve conduction studies and EMG (INSPIRE).

作者信息

Gorenshtein Alon, Sorka Moran, Khateb Mohamed, Aran Dvir, Shelly Shahar

机构信息

Department of Neurology, Rambam Health Care Campus, Haifa, Israel; Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; AI in Neurology Laboratory, Ruth and Bruce Rapaport Faculty of Medicine, Technion Institute of Technology, Haifa 3525408, Israel.

AI in Neurology Laboratory, Ruth and Bruce Rapaport Faculty of Medicine, Technion Institute of Technology, Haifa 3525408, Israel.

出版信息

Clin Neurophysiol. 2025 Sep;177:2110792. doi: 10.1016/j.clinph.2025.2110792. Epub 2025 Jun 15.

Abstract

OBJECTIVE

We aimed to create a tool for electrophysiologist enhancing and standardizing interpretation of neuromuscular electrodiagnostic tests (EDX) using state of the art generative AI technology.

METHODS

We developed three model frameworks for interpreting and reporting EDX: (1) Base-LLM (large language model), employing one-shot inference; (2) INSPIRE (Agent-Guided AI-Powered Interpretation and Reporting of Nerve Conduction Studies and EMG), a multi-agent AI framework; and (3) INSPIRE-Lite, a cost-efficient version of INSPIRE. INSPIRE uses three agents integrating tools to read reference tables and long-context clinical neuromuscular textbook. Performance was evaluated using the AI-Generated EMG Report Score (AIGERS), a scoring system we developed.

RESULTS

INSPIRE achieved an accuracy of 92.2 % for detecting normal versus abnormal tests, significantly outperforming the Base-LLM model, which achieved 62.6 % (p < 0.001). INSPIRE demonstrated significantly higher AIGERS scores overall and across the domains of finding, clinical diagnosis, and semantic concordance (p < 0.001). INSPIRE-Lite scored lower than INSPIRE in finding and clinical diagnosis (p = 0.001 and p = 0.004).

CONCLUSION

Our model integrates variables like patient medical history, current complaints, and EDX findings to manage and interpret EMG. Demonstrating superior performance while addressing hallucinations, data overload, and aiding prioritization and standardization.

SIGNIFICANCE

This model enables comprehensive analysis by integrating diverse clinical variables, enhancing diagnostic accuracy and efficiency of EDX reports.

摘要

目的

我们旨在创建一种工具,供电生理学家使用最先进的生成式人工智能技术来增强和规范神经肌肉电诊断测试(EDX)的解读。

方法

我们开发了三种用于解读和报告EDX的模型框架:(1)基础大语言模型(Base-LLM),采用一次性推理;(2)INSPIRE(神经传导研究和肌电图的智能体引导式人工智能驱动解读与报告),一种多智能体人工智能框架;(3)INSPIRE-Lite,INSPIRE的低成本版本。INSPIRE使用三个整合工具的智能体来读取参考表和长上下文临床神经肌肉教科书。使用我们开发的人工智能生成肌电图报告评分(AIGERS)系统评估性能。

结果

INSPIRE在检测正常与异常测试方面的准确率达到92.2%,显著优于基础大语言模型,后者的准确率为62.6%(p<0.001)。INSPIRE在总体以及发现、临床诊断和语义一致性等领域的AIGERS得分显著更高(p<0.001)。INSPIRE-Lite在发现和临床诊断方面的得分低于INSPIRE(p=0.001和p=0.004)。

结论

我们的模型整合了患者病史、当前症状和EDX结果等变量来管理和解读肌电图。在解决幻觉、数据过载问题以及辅助确定优先级和标准化方面表现出卓越性能。

意义

该模型通过整合多种临床变量实现全面分析,提高了EDX报告的诊断准确性和效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验