Chen Xingfeng, Xie Linfeng, Wu Qingsong, Luo Siying, Wang Zhisheng, Jiang Yikun, Lin Xinfan, Han Xu, Qiu Zhihuang, Chen Liangwan
Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China; Key Laboratory of Cardio-Thoracic Surgery, Fujian Province University, Fuzhou, Fujian, P.R. China; Department of Cardiovascular Surgery, Fujian Provincial Center for Cardiovascular Medicine, Fuzhou, Fujian, P.R. China.
Department of Cardiovascular Surgery, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, P.R. China.
J Vasc Surg. 2025 Jun 18. doi: 10.1016/j.jvs.2025.06.018.
Type B aortic dissection (TBAD) is a life-threatening aortic disease with an increasing incidence, which requires accurate risk stratification tools for thoracic endovascular aortic repair (TEVAR). This multicenter retrospective study aimed to enhance the risk prediction of severe adverse events post TEVAR in patients with TBAD by improving the Age, Creatinine, and Ejection Fraction (ACEF) score.
This multicenter retrospective study enrolled 547 patients with TBAD who underwent TEVAR between 2015 and 2020. The training cohort (n = 382) from Fujian Medical University Union Hospital was used for model development, whereas the validation cohort (n = 165) from two external centers evaluated performance. Independent risk factors were identified using multivariate logistic regression. The novel composite risk score (ACEF-TBAD) combined age, creatinine, and ejection fraction with hypertension, D-dimer/fibrinogen ratio (DFR), and interleukin-6 (IL-6). Model performance was assessed using receiver operating characteristic curve, calibration curves, decision curve analysis, and reclassification indices.
The ACEF-TBAD score demonstrated superior predictive accuracy compared with the original ACEF, modified ACEF, and EuroSCORE II models, with area under the curve values of 0.922 in the training dataset and 0.829 in the validation dataset. Key determinants included hypertension (odds ratio [OR], 4.84; 95% confidence interval [CI], 2.03-11.58; P < .001), DFR (OR, 1.30; 95% CI, 1.16-1.45; P < .001), ACEF score (OR, 4.05; 95% CI, 1.76-9.32; P = .001), and IL-6 (OR, 1.41; 95% CI, 1.11-2.32; P < .001). The score showed excellent calibration (P > .05) and net clinical benefit (decision curve analysis curve). Reclassification analysis revealed significant improvements in risk stratification (net reclassification index, 0.366 in training; 0.206 in validation). The survival curves clearly demonstrated that the ACEF-TBAD score effectively stratified patients into distinct risk categories, which underscores the clinical utility of the ACEF-TBAD score in predicting severe adverse events and supports its use in risk assessment for patients with TBAD.
The ACEF-TBAD score is a novel and simple risk-stratification tool. This enables early identification of high-risk patients, facilitating personalized treatment and improving patient outcomes.
B型主动脉夹层(TBAD)是一种发病率不断上升的危及生命的主动脉疾病,需要精确的风险分层工具用于胸主动脉腔内修复术(TEVAR)。这项多中心回顾性研究旨在通过改进年龄、肌酐和射血分数(ACEF)评分来提高TBAD患者TEVAR术后严重不良事件的风险预测能力。
这项多中心回顾性研究纳入了2015年至2020年间接受TEVAR的547例TBAD患者。来自福建医科大学附属协和医院的训练队列(n = 382)用于模型开发,而来自两个外部中心的验证队列(n = 165)评估模型性能。使用多因素逻辑回归确定独立危险因素。新的综合风险评分(ACEF-TBAD)将年龄、肌酐、射血分数与高血压、D-二聚体/纤维蛋白原比值(DFR)和白细胞介素-6(IL-6)相结合。使用受试者操作特征曲线、校准曲线、决策曲线分析和重新分类指数评估模型性能。
与原始ACEF、改良ACEF和欧洲心脏手术风险评估系统II(EuroSCORE II)模型相比,ACEF-TBAD评分显示出更高的预测准确性,训练数据集的曲线下面积值为0.922,验证数据集为0.829。关键决定因素包括高血压(比值比[OR],4.84;95%置信区间[CI],2.03 - 11.58;P <.001)、DFR(OR,1.30;95% CI,1.16 - 1.45;P <.001)、ACEF评分(OR,4.05;95% CI,1.76 - 9.32;P =.001)和IL-6(OR,1.41;95% CI,1.11 - 2.32;P <.001)。该评分显示出良好的校准(P >.05)和净临床获益(决策曲线分析曲线)。重新分类分析显示风险分层有显著改善(训练中的净重新分类指数为0.366;验证中的为0.206)。生存曲线清楚地表明,ACEF-TBAD评分有效地将患者分为不同的风险类别,这突出了ACEF-TBAD评分在预测严重不良事件方面的临床实用性,并支持其在TBAD患者风险评估中的应用。
ACEF-TBAD评分是一种新颖且简单的风险分层工具。这能够早期识别高危患者,促进个性化治疗并改善患者预后。