Jin Zhechuan, Dong Jiale, Li Chengxiang, Jiang Yi, Yang Jian, Xu Lei, Li Ping, Xie Zhun, Li Yulin, Wang Dongjin, Ji Zhili
Department of General Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
J Med Internet Res. 2025 Jun 10;27:e72649. doi: 10.2196/72649.
Mesenteric malperfusion (MMP) is an uncommon but devastating complication of acute aortic dissection (AAD) that combines 2 life-threatening conditions-aortic dissection and acute mesenteric ischemia. The complex pathophysiology of MMP poses substantial diagnostic and management challenges. Currently, delayed diagnosis remains a critical contributor to poor outcomes because of the absence of reliable individualized risk assessment tools.
This study aims to develop and validate a deep learning-based model that integrates multimodal data to identify patients with AAD at high risk of MMP.
This multicenter retrospective study included 525 patients with AAD from 2 hospitals. The training and internal validation cohort consisted of 450 patients from Beijing Anzhen Hospital, whereas the external validation cohort comprised 75 patients from Nanjing Drum Tower Hospital. Three machine learning models were developed: the benchmark model using laboratory parameters, the multiorgan feature-based AAD complicating MMP (MAM) model based on computed tomography angiography images, and the integrated model combining both data modalities. Model performance was assessed using the area under the curve, accuracy, sensitivity, specificity, and Brier score. To improve interpretability, gradient-weighted class activation mapping was used to identify and visualize discriminative imaging features. Univariate and multivariate regression analyses were used to evaluate the prognostic significance of the risk score generated by the optimal model.
In the external validation cohort, the integrated model demonstrated superior performance, with an area under the curve of 0.780 (95% CI 0.777-0.785), which was significantly greater than those of the benchmark model (0.586, 95% CI 0.574-0.586) and the MAM model (0.732, 95% CI 0.724-0.734). This highlights the benefits of multimodal integration over single-modality approaches. Additional classification metrics revealed that the integrated model had an accuracy of 0.760 (95% CI 0.758-0.764), a sensitivity of 0.667 (95% CI 0.659-0.675), a specificity of 0.783 (95% CI 0.781-0.788), and a Brier score of 0.143 (95% CI 0.143-0.145). Moreover, gradient-weighted class activation mapping visualizations of the MAM model revealed that during positive predictions, the model focused more on key anatomical areas, particularly the superior mesenteric artery origin and intestinal regions with characteristic gas or fluid accumulation. Univariate and multivariate analyses also revealed that the risk score derived from the integrated model was independently associated with inhospital mortality risk among patients with AAD undergoing endovascular or surgical treatment (odds ratio 1.030, 95% CI 1.004-1.056; P=.02).
Our findings demonstrate that compared with unimodal approaches, an integrated deep learning model incorporating both imaging and clinical data has greater diagnostic accuracy for MMP in patients with AAD. This model may serve as a valuable tool for early risk identification, facilitating timely therapeutic decision-making. Further prospective validation is warranted to confirm its clinical utility.
Chinese Clinical Registry Center ChiCTR2400086050; http://www.chictr.org.cn/showproj.html?proj=226129.
肠系膜灌注不良(MMP)是急性主动脉夹层(AAD)一种罕见但具有毁灭性的并发症,它合并了两种危及生命的情况——主动脉夹层和急性肠系膜缺血。MMP复杂的病理生理学带来了重大的诊断和管理挑战。目前,由于缺乏可靠的个体化风险评估工具,延迟诊断仍然是导致不良预后的关键因素。
本研究旨在开发并验证一种基于深度学习的模型,该模型整合多模态数据以识别具有MMP高风险的AAD患者。
这项多中心回顾性研究纳入了来自两家医院的525例AAD患者。训练和内部验证队列由来自北京安贞医院的450例患者组成,而外部验证队列包括来自南京鼓楼医院的75例患者。开发了三种机器学习模型:使用实验室参数的基准模型、基于计算机断层血管造影图像的基于多器官特征的AAD合并MMP(MAM)模型以及结合两种数据模式的整合模型。使用曲线下面积、准确性、敏感性、特异性和布里尔评分评估模型性能。为了提高可解释性,使用梯度加权类激活映射来识别和可视化判别性成像特征。使用单变量和多变量回归分析来评估最佳模型生成的风险评分的预后意义。
在外部验证队列中,整合模型表现出卓越的性能,曲线下面积为0.780(95%CI 0.777 - 0.785),显著大于基准模型(0.586,95%CI 0.574 - 0.586)和MAM模型(0.732,95%CI 0.724 - 0.734)。这突出了多模态整合相对于单模态方法的优势。其他分类指标显示,整合模型的准确性为0.760(95%CI 0.758 - 0.764),敏感性为0.667(95%CI 0.659 - 0.675),特异性为0.783(95%CI 0.781 - 0.788),布里尔评分为0.143(95%CI 0.143 - 0.145)。此外,MAM模型的梯度加权类激活映射可视化显示,在阳性预测期间,该模型更关注关键解剖区域,特别是肠系膜上动脉起源以及具有特征性气体或液体积聚的肠区域。单变量和多变量分析还显示,整合模型得出的风险评分与接受血管内或手术治疗的AAD患者的院内死亡风险独立相关(比值比1.030,95%CI 1.004 - 1.056;P = 0.02)。
我们的研究结果表明,与单模态方法相比,结合成像和临床数据的整合深度学习模型对AAD患者的MMP具有更高的诊断准确性。该模型可作为早期风险识别的有价值工具,有助于及时做出治疗决策。需要进一步的前瞻性验证以确认其临床效用。
中国临床试验注册中心ChiCTR2400086050;http://www.chictr.org.cn/showproj.html?proj=226129