Suppr超能文献

接受放化疗治疗的“分子”胶质母细胞瘤患者的临床结局及深度学习影像特征

Clinical outcome and deep learning imaging characteristics of patients treated by radio-chemotherapy for a "molecular" glioblastoma.

作者信息

Zerbib Caroline, Robinet Lucas, Ken Soleakhena, Cavillon Ana, Roques Margaux, Larrieu Delphine, Siegfried Aurore, Roux Franck Emmanuel, Berjaoui Ahmad, Cohen-Jonathan Moyal Elizabeth

机构信息

Department of Radiation Oncology, Institut Universitaire du Cancer de Toulouse Oncopole, Oncopole Claudius Regaud, 31059 Toulouse Cedex 1, France.

INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), 31037 Toulouse Cedex 1, France.

出版信息

Oncologist. 2025 Jun 4;30(6). doi: 10.1093/oncolo/oyaf127.

Abstract

BACKGROUND

Since 2021, glioblastomas have been classified into two subgroups: classic glioblastomas (histGB), defined as IDH wild-type grade 4 astrocytomas with necrosis and vascular proliferation, showing contrast enhancement (CE) on MRI; and molecular glioblastomas (molGB), characterized by specific alterations (7+/10-, EGFR amplification, TERT mutation). Although not always the case, molGB often lack CE and may mimic low-grade gliomas (LGG), hence complicating the diagnosis. Survival outcomes remain debated. This study aimed to evaluate the response of molGB to standard treatment and assess the ability of machine learning and deep learning to differentiate molGB without CE from LGG on MRI.

METHODS

We retrospectively studied 132 glioblastoma patients treated with radiotherapy and temozolomide, comparing the survival outcomes of histGB and molGB. Artificial intelligence (AI) models were trained using features from MRI FLAIR hypersignal segmentation to distinguish molGB without CE from LGG.

RESULTS

No significant difference in median overall survival (OS) (20.6 vs 18.4 months, P = .2) or progression-free survival (10.1 vs 9.3 months, P = .183) was observed between molGB and histGB. However, molGB without CE demonstrated improved median OS (31.2 vs 18 months, hazard ratios 0.45). Artificial intelligence models distinguished molGB without CE from LGG, achieving a best-performing ROC AUC of 0.85.

CONCLUSIONS

While patients with molGB and histGB have similar overall survival, patients with molGB without CE appear to have better outcomes. Artificial intelligence models effectively differentiate molGB from LGG, supporting their potential diagnostic utility.

摘要

背景

自2021年以来,胶质母细胞瘤已被分为两个亚组:经典胶质母细胞瘤(组织学胶质母细胞瘤,histGB),定义为伴有坏死和血管增生的异柠檬酸脱氢酶(IDH)野生型4级星形细胞瘤,在磁共振成像(MRI)上表现为对比增强(CE);以及分子胶质母细胞瘤(molGB),其特征为特定改变(7+/10-、表皮生长因子受体(EGFR)扩增、端粒酶逆转录酶(TERT)突变)。虽然并非总是如此,但molGB通常缺乏CE,可能类似低级别胶质瘤(LGG),从而使诊断复杂化。生存结果仍存在争议。本研究旨在评估molGB对标准治疗的反应,并评估机器学习和深度学习在MRI上区分无CE的molGB与LGG的能力。

方法

我们回顾性研究了132例接受放疗和替莫唑胺治疗的胶质母细胞瘤患者,比较了histGB和molGB的生存结果。使用MRI液体衰减反转恢复序列(FLAIR)高信号分割特征训练人工智能(AI)模型,以区分无CE的molGB与LGG。

结果

molGB和histGB之间未观察到中位总生存期(OS)(20.6个月对18.4个月,P = 0.2)或无进展生存期(10.1个月对9.3个月,P = 0.183)的显著差异。然而,无CE的molGB显示中位OS有所改善(31.2个月对18个月,风险比0.45)。人工智能模型区分了无CE的molGB与LGG,获得的最佳表现受试者工作特征曲线下面积(ROC AUC)为0.85。

结论

虽然molGB和histGB患者的总生存期相似,但无CE的molGB患者似乎有更好的预后。人工智能模型有效地将molGB与LGG区分开来,支持了它们潜在的诊断效用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验