Cottam Nicholas C, Dowling Morgan, Kong Lingling, Chan-Cortés Michelle Harran, Charvet Christine J, Norzeron Naika, Grover Cameron, Harrington Melissa A, Sumner Charlotte J, Sun Jianli
Department of Biological Sciences, Delaware State University, Dover, Delaware, USA.
Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA.
Brain Pathol. 2025 Jun 21:e70025. doi: 10.1111/bpa.70025.
Spinal muscular atrophy (SMA), a leading genetic cause of infant mortality worldwide, is caused by reduced levels of the ubiquitous survival motor neuron (SMN) protein in SMA patients. Despite significant advancement in recent research and clinical treatments, the cellular pathologies that underlie SMA disease manifestations are not well characterized beyond those of spinal motor neurons (MNs). We previously reported cerebellar abnormalities in an SMA mouse model at the late stage of the disease, including volumetric deficits and lobule-selective structural changes with Purkinje cell degeneration, with colocalized astrocytic reactivity. However, when these cerebellar defects arise and whether they are a consequence of MN degeneration remain unknown. We used magnetic resonance imaging, immunohistochemistry, and electrophysiology to characterize cerebellar pathology in early-stage symptomatic SMNΔ7 mice and late-stage SMA mice with transgenic rescue of SMN in MNs. We found disproportionate structural and lobule-specific surface area deficits, as well as abnormal functional properties in the cerebella of early symptomatic SMA mice, suggesting that cerebellar pathologies may be a primary contributor to murine SMA phenotypes. Moreover, cerebellar pathologies were not ameliorated in SMA mice with MN rescue, suggesting that cerebellar neurons are independently vulnerable to reduced SMN expression. Overall, our study shows that cerebellar defects are a primary pathology in SMA mouse models and that therapies targeting cerebellar neurons in SMA patients may be needed for optimal treatment outcomes.
脊髓性肌萎缩症(SMA)是全球婴儿死亡的主要遗传原因,由SMA患者中普遍存在的生存运动神经元(SMN)蛋白水平降低所致。尽管近期研究和临床治疗取得了重大进展,但除了脊髓运动神经元(MNs)之外,SMA疾病表现背后的细胞病理学特征仍未得到充分表征。我们之前报道了一种SMA小鼠模型在疾病晚期出现的小脑异常,包括体积缩小以及伴有浦肯野细胞变性的小叶选择性结构变化,并伴有共定位的星形细胞反应性。然而,这些小脑缺陷何时出现以及它们是否是MN变性的结果仍不清楚。我们使用磁共振成像、免疫组织化学和电生理学方法,对早期有症状的SMNΔ7小鼠以及MNs中SMN转基因拯救的晚期SMA小鼠的小脑病理学进行了表征。我们发现早期有症状的SMA小鼠的小脑存在不成比例的结构和小叶特异性表面积缺陷以及异常的功能特性,这表明小脑病理学可能是小鼠SMA表型的主要促成因素。此外,MN拯救的SMA小鼠的小脑病理学并未改善,这表明小脑神经元独立地易受SMN表达降低的影响。总体而言,我们的研究表明小脑缺陷是SMA小鼠模型的主要病理学特征,并且可能需要针对SMA患者小脑神经元的疗法以实现最佳治疗效果。