Suppr超能文献

小脑病理学导致脊髓性肌萎缩症中的神经发育缺陷。

Cerebellar pathology contributes to neurodevelopmental deficits in spinal muscular atrophy.

作者信息

Gerstner Florian, Wittig Sandra, Menedo Christian, Ruwald Sayan, Carlini Maria J, Vankova Adela, Sowoidnich Leonie, Martín-López Gerardo, Dreilich Vanessa, Collado Andrea Alonso, Pagiazitis John G, Aousji Oumayma, Grzyb Chloe, Smith Amy, Yang Mu, Roselli Francesco, Mentis George Z, Sumner Charlotte J, Pellizzoni Livio, Simon Christian M

机构信息

Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, 04103, Germany.

Department of Neurology, Columbia University, New York, NY, 10032, USA.

出版信息

Res Sq. 2025 Jun 23:rs.3.rs-6819992. doi: 10.21203/rs.3.rs-6819992/v2.

Abstract

Spinal muscular atrophy (SMA) is a neuromuscular disease characterized by ubiquitous SMN deficiency and loss of motor neurons. The persistence of motor and communication impairments, together with emerging cognitive and social deficits in severe Type I SMA patients treated early with SMN-restoring therapies, suggests a broader dysfunction involving neural circuits of the brain. To explore the potential supraspinal contributions to these emerging phenotypes, we investigated the cerebellum, a brain region critical for both motor and cognitive behaviors. Here, we identify cerebellar pathology in both tissue from Type I SMA patients and a severe mouse model, which is characterized by lobule-specific Purkinje cell (PC) death driven by cell-autonomous, non-apoptotic p53-dependent mechanisms. Loss and dysfunction of excitatory parallel fiber synapses onto PC further contribute to cerebellar circuit disruption and altered PC firing. Furthermore, we identified impaired ultrasonic vocalization (USV) in a severe SMA mouse model-a proxy for early-developing social communication skills that depend on cerebellar function. Cell-specific rescue experiments demonstrate that intrinsic cerebellar pathology contributes to motor and social communication impairments independently of spinal motor circuit abnormalities. Together, these findings establish cerebellar dysfunction as a pathogenic driver of motor and social deficits, providing a link between brain involvement and the emerging neurodevelopmental phenotypes of SMA.

摘要

脊髓性肌萎缩症(SMA)是一种神经肌肉疾病,其特征是普遍存在的运动神经元存活蛋白(SMN)缺乏和运动神经元丧失。在早期接受SMN恢复疗法治疗的严重I型SMA患者中,运动和沟通障碍持续存在,同时出现认知和社交缺陷,这表明存在涉及大脑神经回路的更广泛功能障碍。为了探究脊髓以上部位对这些新出现的表型的潜在影响,我们研究了小脑,这是一个对运动和认知行为都至关重要的脑区。在这里,我们在I型SMA患者的组织和一个严重的小鼠模型中都发现了小脑病变,其特征是由细胞自主的、非凋亡的p53依赖性机制驱动的小叶特异性浦肯野细胞(PC)死亡。PC上兴奋性平行纤维突触的丧失和功能障碍进一步导致小脑回路破坏和PC放电改变。此外,我们在一个严重的SMA小鼠模型中发现了超声波发声(USV)受损,USV是一种早期发展的社交沟通技能的指标,依赖于小脑功能。细胞特异性拯救实验表明,小脑内在病变独立于脊髓运动回路异常,导致运动和社交沟通障碍。总之,这些发现确立了小脑功能障碍是运动和社交缺陷的致病驱动因素,为大脑受累与SMA新出现的神经发育表型之间提供了联系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4067/12204378/a8a38091ca88/nihpp-rs6819992v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验