一种涉及乳酸脱氢酶与血清肌酐比值的预测算法可能有助于识别血栓性血小板减少性紫癜患者。

A predictive algorithm involving lactate dehydrogenase to serum creatinine ratio may assist in identifying patients with thrombotic thrombocytopenic purpura.

作者信息

Chen Xuduan, Zhang Jiexi, Fu Jingjing, Lin Xiangye, Li Wen, Wu Zhengjun, Cai Ruyu, Wei Lixin, Luo Xiaofeng

机构信息

Department of Nephrology, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, China.

Fujian Institute of Clinical Immunology, Fuzhou, China.

出版信息

Ann Hematol. 2025 Jun 21. doi: 10.1007/s00277-025-06472-1.

Abstract

Thrombotic thrombocytopenic purpura (TTP) is a rare but fatal disease requiring urgent diagnosis. The PLASMIC scoring model has been reported to be a valuable model for identifying TTP. This study aimed to investigate the diagnostic accuracy of this model and the diagnostic utility of lactate dehydrogenase (LDH)-to-serum creatinine (sCr) ratio in identifying TTP in Chinese patients. The records of 61 patients with suspected TTP tested for ADAMTS13 activity in our hospital between June 2016 and April 2024 were retrospectively analyzed. Receiver operating characteristic (ROC) analysis was performed to evaluate the diagnostic accuracy of LDH, sCr, and the LDH-to-sCr (LDH/sCr) in predicting TTP. Multivariate logistic regression analysis was used to screen for independent risk factors of TTP, and a combined predictive algorithm was established. The AUC for the PLASMIC scoring model distinguishing TTP from non-TTP was 0.850 (optimal cutoff: 5), with 92.8% sensitivity, 76.5% specificity, 75.8% positive predictive value (PPV), and 92.9% negative predictive value (NPV). The AUC derived from the LDH/sCr ratio was higher than that derived from LDH or sCr (P < 0.05). A combined predictive algorithm, termed the LCRP algorithm (including the LDH/sCr ratio, reticulocyte percentage, and platelet count), was developed for TTP. The AUC (0.955) derived from the LCRP algorithm, with 96.3% sensitivity, 88.2% specificity, 86.7% PPV, and 96.8% NPV, was higher than that of the PLASMIC scoring model (P < 0.05). The LDH/sCr ratio is more effective than isolated LDH or sCr measurements for predicting TTP. The LCRP algorithm involving the LDH/sCr ratio showed superior predictive performance and may hold significant potential for early identification of Chinese patients with TTP.

摘要

血栓性血小板减少性紫癜(TTP)是一种罕见但致命的疾病,需要紧急诊断。据报道,PLASMIC评分模型是识别TTP的一个有价值的模型。本研究旨在探讨该模型在中国患者中识别TTP的诊断准确性以及乳酸脱氢酶(LDH)与血清肌酐(sCr)比值的诊断效用。回顾性分析了2016年6月至2024年4月期间在我院检测ADAMTS13活性的61例疑似TTP患者的记录。进行了受试者操作特征(ROC)分析,以评估LDH、sCr和LDH与sCr比值(LDH/sCr)预测TTP的诊断准确性。采用多因素logistic回归分析筛选TTP的独立危险因素,并建立联合预测算法。PLASMIC评分模型区分TTP与非TTP的曲线下面积(AUC)为0.850(最佳截断值:5),灵敏度为92.8%,特异度为76.5%,阳性预测值(PPV)为75.8%,阴性预测值(NPV)为92.9%。LDH/sCr比值得出的AUC高于LDH或sCr得出的AUC(P<0.05)。为TTP开发了一种联合预测算法,称为LCRP算法(包括LDH/sCr比值、网织红细胞百分比和血小板计数)。LCRP算法得出的AUC(0.955),灵敏度为96.3%,特异度为88.2%,PPV为86.7%,NPV为96.8%,高于PLASMIC评分模型(P<0.05)。LDH/sCr比值在预测TTP方面比单独的LDH或sCr测量更有效。涉及LDH/sCr比值的LCRP算法显示出卓越的预测性能,在早期识别中国TTP患者方面可能具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索