Suppr超能文献

BRSR-OpGAN:使用运算生成对抗网络的盲雷达信号恢复

BRSR-OpGAN: Blind radar signal restoration using operational generative adversarial network.

作者信息

Zahid Muhammad Uzair, Kiranyaz Serkan, Yildirim Alper, Gabbouj Moncef

机构信息

Department of Computing Sciences, Tampere University, Tampere, 33100, Finland.

Department of Electrical Engineering, College of Engineering, Qatar University, Doha, 2713, Qatar.

出版信息

Neural Netw. 2025 Jun 16;190:107709. doi: 10.1016/j.neunet.2025.107709.

Abstract

Many studies on radar signal restoration in the literature focus on isolated restoration problems, such as denoising over a certain type of noise, while ignoring other types of artifacts. Additionally, these approaches usually assume a noisy environment with a limited set of fixed signal-to-noise ratio (SNR) levels. However, real-world radar signals are often corrupted by a blend of artifacts, including but not limited to unwanted echo, sensor noise, intentional jamming, and interference, each of which can vary in type, severity, and duration. This study introduces Blind Radar Signal Restoration using an Operational Generative Adversarial Network (BRSR-OpGAN), which uses a dual domain loss in the temporal and spectral domains. This approach is designed to improve the quality of radar signals, regardless of the diversity and intensity of the corruption. The BRSR-OpGAN utilizes 1D Operational GANs, which use a generative neuron model specifically optimized for blind restoration of corrupted radar signals. This approach leverages GANs' flexibility to adapt dynamically to a wide range of artifact characteristics. The proposed approach has been extensively evaluated using a well-established baseline and a newly curated extended dataset called the Blind Radar Signal Restoration (BRSR) dataset. This dataset was designed to simulate real-world conditions and includes a variety of artifacts, each varying in severity. The evaluation shows an average SNR improvement over 15.1 dB and 14.3 dB for the baseline and BRSR datasets, respectively. Finally, the proposed approach can be applied in real-time, even on resource-constrained platforms. This pilot study demonstrates the effectiveness of blind radar restoration in time-domain for real-world radar signals, achieving exceptional performance across various SNR values and artifact types. The BRSR-OpGAN method exhibits robust and computationally efficient restoration of real-world radar signals, significantly outperforming existing methods.

摘要

文献中许多关于雷达信号恢复的研究都集中在孤立的恢复问题上,比如对某类噪声进行去噪,而忽略了其他类型的伪像。此外,这些方法通常假设噪声环境具有一组有限的固定信噪比(SNR)水平。然而,现实世界中的雷达信号常常受到多种伪像的混合影响,包括但不限于不需要的回波、传感器噪声、故意干扰和干扰,每一种伪像在类型、严重程度和持续时间上都可能不同。本研究引入了使用操作生成对抗网络的盲雷达信号恢复方法(BRSR-OpGAN),该方法在时域和频域中使用双域损失。这种方法旨在提高雷达信号的质量,而不管损坏的多样性和强度如何。BRSR-OpGAN利用一维操作生成对抗网络,该网络使用专门为受损雷达信号的盲恢复而优化的生成神经元模型。这种方法利用了生成对抗网络的灵活性,能够动态适应各种伪像特征。所提出的方法已经使用一个成熟的基线和一个新策划的扩展数据集——盲雷达信号恢复(BRSR)数据集进行了广泛评估。该数据集旨在模拟现实世界的条件,包括各种严重程度不同的伪像。评估表明,基线数据集和BRSR数据集的平均信噪比分别提高了15.1 dB和14.3 dB。最后,所提出的方法甚至可以在资源受限的平台上实时应用。这项初步研究证明了时域中盲雷达恢复对于现实世界雷达信号的有效性,在各种信噪比和伪像类型下都取得了优异的性能。BRSR-OpGAN方法在恢复现实世界雷达信号方面表现出强大且计算高效的能力,显著优于现有方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验