Ding Ding, Li Pengwei, Zhu Yuxiang, Chen Kai, Fan Zhongxiong, Zhang Yanyun, Xu Qingchi, Xu Jun
Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen 361005, PR China.
School of Pharmaceutical Sciences, Institute of Materia Medica, Xinjiang University, Urumqi 830017, PR China.
J Colloid Interface Sci. 2025 Dec;699(Pt 2):138132. doi: 10.1016/j.jcis.2025.138132. Epub 2025 Jun 14.
Lithium metal anodes (LMAs), despite their exceptional theoretical capacity, face critical challenges, including uncontrolled dendrite growth and significant volumetric expansion during lithium (Li) deposition/stripping, which confront substantial commercialization barriers. To address these limitations, we propose a nitrogen-doped (N-doped) carbon nanosheet encapsulating cobalt phosphide (CoP) nanoparticles in situ grown on a three-dimensional (3D) carbon cloth (CC) framework (CC@CoP-NC), creating a dual electronic-ionic conductive 3D current collector to molten Li pre-storage. The porous 3D architecture remarkably decreases local current density and ensures adequate space, while the combination of the N-dopants with strong Li affinity and inlaid CoP nanoparticles endow CC with excellent lithophilicity ensuring uniform Li nucleation. During infusion of molten Li, lithium phosphide (LiP) and cobalt (Co) form in situ, further reinforcing the interconnected electronic-ionic conductive network and facilitating uniform charge distribution of the anode surface. The CC@CoP-NC with pre-storage Li (CC@CoP-NC@Li) demonstrates superior interface kinetics and durable cycling performance. Moreover, full cells with LiFePO (LFP) as the cathode exhibit superior rate capability and prolonged cycling durability. This innovation highlights considerable progress in attaining a stable Li anode, providing a significant advancement toward the practical application of lithium metal batteries (LMBs).
锂金属阳极(LMA)尽管具有卓越的理论容量,但仍面临严峻挑战,包括锂沉积/脱嵌过程中不受控制的枝晶生长和显著的体积膨胀,这构成了重大的商业化障碍。为解决这些限制,我们提出了一种氮掺杂(N掺杂)碳纳米片包裹磷化钴(CoP)纳米颗粒的结构,该纳米颗粒原位生长在三维(3D)碳布(CC)框架上(CC@CoP-NC),创建了一种用于熔融锂预存储的双电子-离子导电3D集流体。多孔3D结构显著降低了局部电流密度并确保了足够的空间,而具有强锂亲和力的N掺杂剂与嵌入的CoP纳米颗粒相结合,赋予CC优异的亲锂性,确保锂均匀成核。在注入熔融锂的过程中,磷化锂(LiP)和钴(Co)原位形成,进一步加强了相互连接的电子-离子导电网络,并促进了阳极表面的均匀电荷分布。预存储锂的CC@CoP-NC(CC@CoP-NC@Li)表现出优异的界面动力学和持久的循环性能。此外,以磷酸铁锂(LFP)为阴极的全电池表现出优异的倍率性能和延长的循环耐久性。这一创新突出了在实现稳定锂阳极方面取得的重大进展,为锂金属电池(LMB)的实际应用提供了重要进展。