Luo Xuan, Pu Zepeng, Li Haowei, Li Zhan, Yang Xiaohui, Fu Aiping, Liu Xuehua, Li Hongliang
Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
ACS Appl Mater Interfaces. 2025 Jul 2;17(26):38019-38030. doi: 10.1021/acsami.5c06263. Epub 2025 Jun 16.
Lithium-sulfur (Li-S) batteries, with their high theoretical specific capacity, are regarded as the orientation of next-generation energy storage techniques. However, suppressing the shuttle effect of lithium polysulfides (LiPSs) and accelerating the conversion kinetics of LiS and LiS are extremely important but tricky issues in the design of sulfur cathodes. In this study, porous carbon nanofibers decorated with CoP nanoparticle (CoP@PCNFs) are designed by combining an electrospinning method with an in situ phosphorization process. The obtained CoP@PCNFs porous fibers, which stack in the form of a film, are used as a substrate for encapsulating elemental S. The fabricated S/CoP@PCNFs films are then utilized as the self-standing composite cathode for lithium-sulfur batteries. The network structure and porous architecture of the CoP@PCNFs substrates ensure rapid charge transfer kinetics and provide abundant active interfaces to effectively anchor LiPSs and suppress their shuttling. Ascribing to the high electronegativity and catalytic nature of the CoP nanoparticles embedded therein, the CoP@PCNFs not only shows strong adsorption to LiPSs but also endows superior catalytic capability to the rapid transformation of LiS to LiS. The Li-S cell assembled with S/CoP@PCNFs as the cathode exhibits outstanding electrochemical performance. It delivers an impressive initial capacity of 1240.4 mAh g at 0.2 C and shows excellent rate performance with a capacity of 526 mAh g at a current density of 2 C. Over 500 cycles at 1 C, the capacity decay rate is 0.0198% per cycle. Even under extreme conditions with a sulfur loading of 4.48 mg cm and an electrolyte/sulfur ratio of 7.8 μL/mg, it still retains a capacity of 457.3 mAh g after 150 cycles. Such a composite cathode can effectively promote the solid-solid conversion process and suppress the "shuttle effect" of LiPSs. This work provides a strategy for the rational design of self-standing cathodes for lithium-sulfur batteries with the potential for practical applications.
锂硫(Li-S)电池具有高理论比容量,被视为下一代储能技术的发展方向。然而,抑制多硫化锂(LiPSs)的穿梭效应并加速LiS和LiS的转化动力学,是硫正极设计中极其重要但棘手的问题。在本研究中,通过将静电纺丝法与原位磷化工艺相结合,设计了负载有CoP纳米颗粒的多孔碳纳米纤维(CoP@PCNFs)。所制备的CoP@PCNFs多孔纤维以薄膜形式堆叠,用作封装单质硫的基底。然后,将制备的S/CoP@PCNFs薄膜用作锂硫电池的自支撑复合正极。CoP@PCNFs基底的网络结构和多孔架构确保了快速的电荷转移动力学,并提供了丰富的活性界面,以有效锚定LiPSs并抑制其穿梭。由于嵌入其中的CoP纳米颗粒具有高电负性和催化性质,CoP@PCNFs不仅对LiPSs表现出强烈的吸附作用,还赋予了将LiS快速转化为LiS的优异催化能力。以S/CoP@PCNFs作为正极组装的锂硫电池表现出出色的电化学性能。在0.2 C下,其初始容量高达1240.4 mAh g,在2 C的电流密度下具有526 mAh g的出色倍率性能。在1 C下循环500次以上,容量衰减率为每循环0.0198%。即使在硫负载为4.48 mg cm且电解质/硫比为7.8 μL/mg的极端条件下,经过150次循环后仍保持457.3 mAh g的容量。这种复合正极可以有效促进固-固转化过程并抑制LiPSs的“穿梭效应”。这项工作为合理设计具有实际应用潜力的锂硫电池自支撑正极提供了一种策略。