人工智能辅助内镜图像检测鼻咽癌:一项全国性、多中心的模型开发与验证研究。
Artificial intelligence-assisted detection of nasopharyngeal carcinoma on endoscopic images: a national, multicentre, model development and validation study.
作者信息
Shi Yuxuan, Li Zhen, Wang Li, Wang Hong, Liu Xiaofeng, Gu Dantong, Chen Xiao, Liu Xueli, Gong Wentao, Jiang Xiaowen, Li Wenquan, Lin Yongdong, Liu Ke, Luo Deyan, Peng Tao, Peng Xuemei, Tong Meimei, Zheng Huizhen, Zhou Xuanchen, Wu Jianrong, El Fakhri Georges, Chang Mingzhang, Liao Jun, Li Jie'en, Wang Desheng, Ye Jing, Qu Shenhong, Jiang Weihong, Liu Quan, Sun Xicai, Zheng Yefeng, Yu Hongmeng
机构信息
ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China.
ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
出版信息
Lancet Digit Health. 2025 Jun;7(6):100869. doi: 10.1016/j.landig.2025.03.001. Epub 2025 Jun 20.
BACKGROUND
Nasopharyngeal carcinoma is highly curable when diagnosed early. However, the nasopharynx's obscure anatomical position and the similarity of local imaging manifestations with those of other nasopharyngeal diseases often lead to diagnostic challenges, resulting in delayed or missed diagnoses. Our aim was to develop a deep learning algorithm to enhance an otolaryngologist's diagnostic capabilities by differentiating between nasopharyngeal carcinoma, benign hyperplasia, and normal nasopharynx during endoscopic examination.
METHODS
In this national, multicentre, model development and validation study, we developed a Swin Transformer-based Nasopharyngeal Diagnostic (STND) system to identify nasopharyngeal carcinoma, benign hyperplasia, and normal nasopharynx. STND was developed with 27 362 nasopharyngeal endoscopic images (10 693 biopsy-proven nasopharyngeal carcinoma, 7073 biopsy-proven benign hyperplasia, and 9596 normal nasopharynx) sourced from eight prominent nasopharyngeal carcinoma centres (stage 1), and externally validated with 1885 prospectively acquired images from ten comprehensive hospitals with a high incidence of nasopharyngeal carcinoma (stage 2). Furthermore, we did a fully crossed, multireader, multicase study involving four expert otolaryngologists from four regional leading nasopharyngeal carcinoma centres, and 24 general otolaryngologists from 24 geographically diverse primary hospitals. This study included 400 images to evaluate the diagnostic capabilities of the experts and general otolaryngologists both with and without the aid of the STND system in a real-world environment.
FINDINGS
Endoscopic images used in the internal study (Jan 1, 2017, to Jan 31, 2023) were from 15 521 individuals (9033 [58·2%] men and 6488 [41·8%] women; mean age 47·6 years [IQR 38·4-56·8]). Images from 945 participants (538 [56·9%] men and 407 [43·1%] women; mean age 45·2 years [IQR 35·2- 55·2]) were used in the external validation. STND in the internal dataset discriminated normal nasopharynx images from abnormalities (benign hyperplasia and nasopharyngeal carcinoma) with an area under the curve (AUC) of 0·99 (95% CI 0·99-0·99) and malignant images (ie, nasopharyngeal carcinoma) from non-malignant images (ie, benign hyperplasia and normal nasopharynx) with an AUC of 0·99 (95% CI 0·98-0·99). In the external validation, the system had an AUC for the detection of nasopharyngeal carcinoma of 0·95 (95% CI 0·94-0·96), a sensitivity of 91·6% (95% CI 89·3-93·5), and a specificity of 86·1% (95% CI 84·1-87·9). In the multireader, multicase study, the artificial intelligence (AI)-assisted strategy enhanced otolaryngologists' diagnostic accuracy by 7·9%, increasing from 83·4% (95% CI 80·1-86·7, without AI assistance) to 91·2% (95% CI 88·6-93·9, with AI assistance; p<0·0001) for primary care otolaryngologists. Reading time per image decreased with the aid of the AI model (mean 5·0 s [SD 2·5] vs 6·7 s [6·0] without the model; p=0·034).
INTERPRETATION
Our deep learning system has shown significant clinical potential for the practical application of nasopharyngeal carcinoma diagnosis through endoscopic images in real-world settings. The system offers substantial benefits for adoption in primary hospitals, aiming to enhance specificity, avoid additional biopsies, and reduce missed diagnoses.
FUNDING
New Technologies of Endoscopic Surgery in Skull Base Tumor: CAMS Innovation Fund for Medical Science; Shanghai Science and Technology Committee Foundation; Shanghai Municipal Key Clinical Specialty; National Key Clinical Specialty Program; and the Young Elite Scientists Sponsorship Program.
背景
鼻咽癌若能早期诊断则治愈率很高。然而,鼻咽部解剖位置隐匿,且局部影像学表现与其他鼻咽部疾病相似,常给诊断带来挑战,导致诊断延迟或漏诊。我们的目的是开发一种深度学习算法,通过在内镜检查时区分鼻咽癌、良性增生和正常鼻咽部,来提高耳鼻喉科医生的诊断能力。
方法
在这项全国性、多中心的模型开发与验证研究中,我们开发了一种基于Swin Transformer的鼻咽诊断(STND)系统,以识别鼻咽癌、良性增生和正常鼻咽部。STND系统是利用从八个著名鼻咽癌中心获取的27362张鼻咽内镜图像(10693例经活检证实的鼻咽癌、7073例经活检证实的良性增生和9596例正常鼻咽部)开发的(第一阶段),并使用从十家鼻咽癌高发的综合医院前瞻性获取的1885张图像进行外部验证(第二阶段)。此外,我们进行了一项完全交叉、多阅片者、多病例研究,涉及来自四个地区领先鼻咽癌中心的四名耳鼻喉科专家,以及来自24家地理位置不同的基层医院的24名普通耳鼻喉科医生。本研究纳入400张图像,以评估专家和普通耳鼻喉科医生在有和没有STND系统辅助的真实环境中的诊断能力。
结果
内部研究(2017年1月1日至2023年1月31日)中使用的内镜图像来自15521名个体(9033名[58.2%]男性和6488名[41.8%]女性;平均年龄47.6岁[四分位间距38.4 - 56.8])。945名参与者(538名[56.9%]男性和407名[43.1%]女性;平均年龄45.2岁[四分位间距35.2 - 55.2])的图像用于外部验证。内部数据集中的STND系统区分正常鼻咽部图像与异常图像(良性增生和鼻咽癌)的曲线下面积(AUC)为0.99(95%置信区间0.99 - 0.99),区分恶性图像(即鼻咽癌)与非恶性图像(即良性增生和正常鼻咽部)的AUC为0.99(95%置信区间0.98 - 0.99)。在外部验证中,该系统检测鼻咽癌的AUC为0.95(95%置信区间0.94 - 0.96),灵敏度为91.6%(95%置信区间89.3 - 93.5),特异度为86.1%(95%置信区间84.1 - 87.9)。在多阅片者、多病例研究中,人工智能(AI)辅助策略将耳鼻喉科医生的诊断准确率提高了7.9%,基层医疗耳鼻喉科医生的诊断准确率从83.4%(9(95%置信区间80.1 - 86.7,无AI辅助)提高到91.2%(95%置信区间88.6 - 93.9,有AI辅助;p<0.0001)。借助AI模型,每张图像的阅读时间减少(平均5.0秒[标准差2.5],无模型时为6.7秒[标准差6.0];p = 0.034)。
解读
我们的深度学习系统在现实环境中通过内镜图像进行鼻咽癌诊断的实际应用中显示出显著的临床潜力。该系统在基层医院应用具有诸多益处,旨在提高特异度、避免额外活检并减少漏诊。
资助
颅底肿瘤内镜手术新技术:中国医学科学院创新基金;上海市科委基金;上海市重点临床专科;国家重点临床专科项目;以及青年精英科学家资助计划。