Suppr超能文献

一种用于腹主动脉瘤患者择期血管腔内修复术后中长期死亡风险评估的有效预测模型。

A validated predictive model for mid- and long-term mortality risk assessment after elective endovascular repair in abdominal aortic aneurysm patients.

作者信息

Li Ruihua, Xue Junshuai, Sun Hongze, Jiang Jianjun, Liu Yang

机构信息

Department of General Surgery, Vascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China.

Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing.

出版信息

Ann Med. 2025 Dec;57(1):2519685. doi: 10.1080/07853890.2025.2519685. Epub 2025 Jun 22.

Abstract

BACKGROUND

Risk scoring systems for open surgical repair of abdominal aortic aneurysm (AAA) may overestimate mortality after endovascular aneurysm repair (EVAR). A model for mid-term and long-term mortality after EVAR is still lacking.

MATERIAL AND METHOD

MEDLINE, Embase and WOS were searched from January 1, 2000 to December 31, 2022. Hazard ratios and 95% confidence intervals (CI) for mortality-related risk factors were extracted and synthesized in a meta-analysis. The C-statistics, IDI, NRI and DCA were used to assess the stability. A predictive model incorporating independent meta-analytic variables was developed, validated in a clinical cohort and compared with the Giles model.

RESULTS

35 studies containing 49272 patients were analyzed. A prediction model was established, including age, gender, aneurysm diameter, American Society of Anesthetists score, chronic obstructive pulmonary disease, cardiac disease, renal disease, cerebrovascular disease, diabetes, peripheral vascular disease, statins, aspirin, and smoker. The model had a C-statistic of 0.738 (95%CI:0.697, 0.779) in validation cohort, comprising 537 patients after EVAR. The sensitivities were 0.765, 0.796 and 0.756, and the specificities were 0.744, 0.652 and 0.668 at 1/3/5 years. In contrast, Giles model had a C-statistic of 0.657 (95%CI:0.608, 0.706). Integrated discrimination improvement (0.03,  < 0.001; 0.045,  = 0.01; 0.062,  < 0.001) and net reclassification index (0.342,  < 0.001; 0.306,  < 0.001; 0.356,  < 0.001) indicated improved predictive performance by the new model over Giles model.

CONCLUSION

This meta-analysis-derived AAA long-term mortality prediction model employs precision risk stratification to enhance clinical decision-making and implement personalized follow-up protocols, thereby delivering evidence-based support for clinical practice.

摘要

背景

腹主动脉瘤(AAA)开放手术修复的风险评分系统可能高估了血管内动脉瘤修复(EVAR)后的死亡率。目前仍缺乏EVAR术后中期和长期死亡率的模型。

材料与方法

检索2000年1月1日至2022年12月31日期间的MEDLINE、Embase和WOS数据库。提取与死亡率相关的危险因素的风险比和95%置信区间(CI),并进行荟萃分析。使用C统计量、鉴别指数(IDI)、净重新分类指数(NRI)和决策曲线分析(DCA)来评估稳定性。开发了一个包含独立荟萃分析变量的预测模型,在临床队列中进行验证,并与Giles模型进行比较。

结果

分析了35项研究,共49272例患者。建立了一个预测模型,包括年龄、性别、动脉瘤直径、美国麻醉医师协会评分、慢性阻塞性肺疾病、心脏病、肾病、脑血管疾病、糖尿病、外周血管疾病、他汀类药物、阿司匹林和吸烟者。在包含537例EVAR术后患者的验证队列中,该模型的C统计量为0.738(95%CI:0.697,0.779)。在1/3/5年时,敏感性分别为0.765、0.796和0.756,特异性分别为0.744、0.652和0.668。相比之下,Giles模型的C统计量为0.657(95%CI:0.608,0.706)。综合鉴别改善(0.03,<0.001;0.045,=0.01;0.062,<0.001)和净重新分类指数(0.342,<0.001;0.306,<0.001;0.356,<0.001)表明新模型的预测性能优于Giles模型。

结论

这个基于荟萃分析得出的AAA长期死亡率预测模型采用精确的风险分层来加强临床决策并实施个性化的随访方案,从而为临床实践提供循证支持。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验