Suppr超能文献

调控异质结构催化剂的界面内建电场以促进碱性条件下的全解水反应

Manipulating interfacial built-in electric field of heterostructure catalysts to promote overall water splitting in alkaline.

作者信息

Su Jian, Jiang Nan, Wang Yuanyuan, Jiang Bolong, Wang Xueqin, Song Hua

机构信息

College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318 Heilongjiang, China.

College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318 Heilongjiang, China.

出版信息

J Colloid Interface Sci. 2025 Dec;699(Pt 2):138177. doi: 10.1016/j.jcis.2025.138177. Epub 2025 Jun 16.

Abstract

The strategic construction of built-in electric fields (BIEF) through heterostructure engineering has emerged as a promising avenue for enhancing the intrinsic catalytic activity in dual-functional water electrolysis. In this work, we develop an innovative in-situ topological reconstruction strategy to fabricate phosphorus-defect-enriched NiCoP@NiFe LDH p-n heterojunction architectures on nickel foam (denoted as NiCoP@NiFe LDH/NF), establishing a quantitative structure-activity relationship between BIEF intensity modulation and catalytic performance enhancement. The introduced phosphorus vacancies at the heterointerface synergistically amplify the BIEF strength compared to defect-free counterparts, as evidenced by advanced characterizations, which orchestrates three critical catalytic enhancements: (i) accelerated interfacial charge transfer kinetics (charge transfer resistance reduced by 48 %), (ii) optimized adsorption/desorption energetics for reactive intermediates (ΔG = -0.12 eV for HER), and (iii) precise tuning of transition metal d-band centers toward optimal positions. The resultant catalyst exhibits exceptional bifunctional activity with ultralow overpotentials of 36 mV (HER) and 220 mV (OER) at 10 mA∙cm, surpassing benchmark Pt/C (43 mV) and RuO (265 mV) catalysts. Remarkably, the assembled alkaline electrolyzer achieves a record-low cell voltage of 1.50 V at 10 mA∙cm with unprecedented durability (∼200 h). Through multiscale density functional theory (DFT) simulations, we systematically reveal that the BIEF amplification from defect-heterojunction synergy induces charge redistribution at the atomic level, thereby creating optimal dual-active sites with balanced H* and O-containing intermediate adsorption. This work establishes a novel paradigm for designing high-performance electrocatalysts through defect-mediated BIEF engineering while providing fundamental insights into the quantum-level regulation of catalytic processes.

摘要

通过异质结构工程策略构建内建电场(BIEF)已成为增强双功能水电解中本征催化活性的一条有前景的途径。在这项工作中,我们开发了一种创新的原位拓扑重构策略,在泡沫镍上制备富含磷缺陷的NiCoP@NiFe LDH p-n异质结结构(记为NiCoP@NiFe LDH/NF),建立了BIEF强度调制与催化性能增强之间的定量构效关系。与无缺陷的对应物相比,异质界面处引入的磷空位协同增强了BIEF强度,先进表征证明了这一点,这带来了三个关键的催化增强:(i)加速界面电荷转移动力学(电荷转移电阻降低48%),(ii)优化反应中间体的吸附/解吸能量(HER的ΔG = -0.12 eV),以及(iii)将过渡金属d带中心精确调整到最佳位置。所得催化剂表现出优异的双功能活性,在10 mA∙cm时具有36 mV(HER)和220 mV(OER)的超低过电位,超过了基准Pt/C(43 mV)和RuO(265 mV)催化剂。值得注意 的是,组装的碱性电解槽在10 mA∙cm时实现了创纪录的1.50 V低电池电压,且具有前所未有的耐久性(约200小时)。通过多尺度密度泛函理论(DFT)模拟,我们系统地揭示了缺陷-异质结协同作用引起的BIEF放大在原子水平上诱导电荷重新分布,从而创造出具有平衡的H*和含O中间体吸附的最佳双活性位点。这项工作建立了一种通过缺陷介导的BIEF工程设计高性能电催化剂的新范式,同时为催化过程的量子水平调控提供了基本见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验