Yanai Akihiro, Horie Akihito, Sakurai Azusa, Imakita Sachi, Nakamura Mitsuhiro, Ikeda Asami, Shitanaka Shimpei, Ohara Tsutomu, Nakakita Baku, Ueda Akihiko, Kitawaki Yoshimi, Sagae Yusuke, Okunomiya Asuka, Mandai Masaki
Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Obstetrics & Gynecology, Medical Research Institute Kitano Hospital, PIIF Tazuke-kofukai, Osaka, Japan.
Comput Biol Med. 2025 Jun 21;195:110637. doi: 10.1016/j.compbiomed.2025.110637.
Accurate embryo assessment on embryonic day 3 of assisted reproductive technology (ART) is crucial for deciding whether to continue the culture until day 5 (blastocyst stage) or opt for earlier transfer or cryopreservation. Prolonged culture often improves pregnancy outcomes in patients with multiple high-quality embryos, but may offer limited benefits for older patients or those with few available embryos. In Japan, where donor eggs are rarely used, cleavage-stage vitrification remains common in poor-prognosis cases, making early embryo assessment clinically relevant. To address this clinical challenge, analyzing embryo quality in early stages by artificial intelligence (AI) can be useful. We retrospectively analyzed images of 7111 two-pronuclear embryos (Veeck grade ≤3) using four different time-lapse incubators. We fine-tuned ImageNet-1k-pretrained NASNet-A Large to automatically classify each time-lapse image into 17 morphological categories, including cell stages and Veeck grades 1-3. This model achieved 95 % cell-stage accuracy on the test set. We combined these annotations with age at egg retrieval in a gradient boosting framework (XGBoost) to predict blastocyst formation, good blastocysts, and poor blastocyst + arrested embryos (PBAE). The ROC AUCs were 0.87, 0.88, and 0.87 for blastocyst formation, good blastocysts, and PBAE, respectively, indicating good predictive performance for day 3 embryo assessment. Notably, the PBAE model reached a precision-recall AUC of 0.90, accurately identifying embryos unlikely to benefit from extended culture. This novel AI prediction model could ensure transparency and addresses the "black box" limitation often associated with AI. By integrating a high-accuracy auto-annotation pipeline with interpretable AI (via SHapley Additive exPlanations), our device-independent approach supports appropriate embryo-specific decisions, potentially reducing unnecessary culture, optimizing workflows, and improving clinical outcomes in ART.
在辅助生殖技术(ART)的胚胎第3天进行准确的胚胎评估对于决定是继续培养至第5天(囊胚期),还是选择更早移植或冷冻保存至关重要。延长培养通常会改善拥有多个高质量胚胎患者的妊娠结局,但对于年长患者或可用胚胎较少的患者可能益处有限。在日本,由于很少使用供体卵子,卵裂期玻璃化冷冻在预后不良的病例中仍然很常见,这使得早期胚胎评估具有临床相关性。为应对这一临床挑战,利用人工智能(AI)在早期分析胚胎质量可能会有所帮助。我们使用四个不同的延时培养箱对7111个双原核胚胎(Veeck分级≤3)的图像进行了回顾性分析。我们对ImageNet-1k预训练的NASNet-A Large进行了微调,以将每个延时图像自动分类为17种形态学类别,包括细胞阶段和Veeck分级1 - 3。该模型在测试集上实现了95%的细胞阶段准确率。我们在梯度提升框架(XGBoost)中将这些注释与取卵时的年龄相结合,以预测囊胚形成、优质囊胚以及劣质囊胚 + 胚胎停滞(PBAE)。囊胚形成、优质囊胚和PBAE的ROC曲线下面积(AUC)分别为0.87、0.88和0.87,表明对第3天胚胎评估具有良好的预测性能。值得注意的是,PBAE模型的精确召回AUC达到了0.90,准确识别出不太可能从延长培养中获益的胚胎。这种新型AI预测模型可以确保透明度,并解决通常与AI相关的“黑箱”局限性。通过将高精度自动注释管道与可解释AI(通过Shapley加性解释)相结合,我们的设备无关方法支持做出适当的胚胎特异性决策,可能减少不必要的培养,优化工作流程,并改善ART中的临床结局。