Anceschi Cecilia, Scavone Francesca, Armanetti Paolo, Menichetti Luca, Catarinicchia Claudia, Borri Claudia, Ratto Fulvio, Micheletti Filippo, Formica Noemi, Ruzzolini Jessica, Frediani Elena, Chillà Anastasia, Margheri Francesca, Severi Mirko, Traversi Rita, Nardini Patrizia, Guasti Daniele, Del Rosso Mario, Del Rosso Tommaso, Giovanelli Lisa, Talamonti Cinzia, Mangoni Monica, Desideri Isacco, Burchielli Silvia, Pajar Fabiola, Fibbi Gabriella, Laurenzana Anna
Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, Florence, 50134, Italy.
Institute of Clinical Physiology (IFC), National Research Council, Pisa, 56124, Italy.
Adv Healthc Mater. 2025 Aug;14(22):e2502416. doi: 10.1002/adhm.202502416. Epub 2025 Jun 23.
Radiotherapy remains a cornerstone in metastatic cancer treatment but is often hindered by tumor hypoxia and radioresistance. Gold nanorods (AuNRs) offer promise in enhancing radiotherapy through hyperthermia, yet their clinical impact is limited by poor tumor targeting. Building on the previous findings demonstrating the tumor-homing ability of Endothelial Colony Forming Cells (ECFCs) loaded with AuNRs, this study advances their use as a biologically targeted delivery system for precise radiotherapy enhancement. Using 3D in vitro tumor models and in vivo studies with nude rats, it is demonstrated that ECFCs actively home to hypoxic tumor regions, overcoming traditional nanoparticle delivery limitations. This targeted approach ensures efficient AuNR accumulation, enhancing photothermal activation and maximizing radiosensitization. In vitro, ECFC-loaded AuNRs significantly amplify radiotherapy effects, inducing ferroptosis in melanoma and inhibiting autophagy in breast cancer cells-revealing distinct tumor-specific mechanisms. Moreover, ECFC-AuNRs suppress tumor proliferation and angiogenesis, blocking vessel-like structure formation in vitro and in vivo. By integrating cellular therapy with nanotechnology, this study presents a novel strategy to counter radioresistance and improve therapeutic precision. These findings lay the foundation for a clinically viable, patient-specific approach, unlocking new possibilities in advanced cancer treatment.
放射治疗仍然是转移性癌症治疗的基石,但常受肿瘤缺氧和放射抗性的阻碍。金纳米棒(AuNRs)有望通过热疗增强放射治疗效果,但其临床应用因肿瘤靶向性差而受限。基于先前证实负载AuNRs的内皮祖细胞(ECFCs)具有肿瘤归巢能力的研究结果,本研究推进了其作为生物靶向递送系统用于精确增强放射治疗的应用。通过使用三维体外肿瘤模型和对裸鼠进行体内研究,证明ECFCs能主动归巢至缺氧肿瘤区域,克服了传统纳米颗粒递送的局限性。这种靶向方法确保了AuNRs的有效积累,增强了光热激活并最大化了放射增敏作用。在体外,负载ECFCs的AuNRs显著增强了放射治疗效果,在黑色素瘤中诱导铁死亡并在乳腺癌细胞中抑制自噬——揭示了不同的肿瘤特异性机制。此外,ECFC-AuNRs抑制肿瘤增殖和血管生成,在体外和体内均阻断类血管结构的形成。通过将细胞疗法与纳米技术相结合,本研究提出了一种对抗放射抗性并提高治疗精准度的新策略。这些发现为一种临床上可行的、针对患者的方法奠定了基础,为晚期癌症治疗开启了新的可能性。
Cochrane Database Syst Rev. 2018-2-6
Phys Med Biol. 2024-2-15
Mater Horiz. 2025-6-30
J Nanobiotechnology. 2025-8-26
Front Pharmacol. 2023-9-19
Cell Death Dis. 2023-7-25
Colloids Surf B Biointerfaces. 2023-5
Nat Rev Cancer. 2023-2