Pollack Jackie, Yang Wei, Arnaoutakis George J, Kallan Michael J, Kimmel Stephen E
Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville (J.P., S.E.K.).
Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (W.Y.).
Circ Cardiovasc Qual Outcomes. 2025 Jun 23:e011608. doi: 10.1161/CIRCOUTCOMES.124.011608.
Prediction models determining expected outcomes are infrequently updated (ie, static), which may reduce accuracy and misclassify hospital performance over time. Dynamic models incorporate changes over time and may improve accuracy and fairness in hospital comparisons. This study evaluated whether dynamic updating, compared with a static model, altered hospital rankings and outlier detection among surgical aortic valve replacement patients.
This retrospective cohort study assessed performance across 53 hospitals using claims data from the Pennsylvania Health Care Cost Containment Council. A multivariable logistic regression model using clinical and demographic variables was developed on data from 1999 to 2006 to predict 30-day postoperative mortality, then applied to testing data from 2007 to 2018 to compare 4 strategies: (1) a static model with fixed parameters, (2) an annual correction factor based on The Society of Thoracic Surgeons methodology, (3) calibration regression for annual recalibration, and (4) dynamic logistic state space model to continuously update model coefficients. Performance was evaluated using observed-to-expected ratios and scores. Lower values indicate better-than-expected outcomes.
The training sample included 14 070 patients (mean age 66.6; 43.1% female); the testing sample included 29 127 patients (mean age 67.4; 39.1% female). The static model had the widest score variability (range -6.97 to 1.38), compared with calibration regression (-3.04 to 2.85), correction factor (-2.87 to 3.24), and dynamic logistic state space model (-2.57 to 3.03). The static model labeled 15 hospitals as significantly better-than-expected; only 3 (20.0%) maintained this classification with the correction factor and dynamic logistic state space model, and 5 (33.3%) with calibration regression. No hospitals were classified as significantly worse-than-expected under the static model, whereas calibration regression identified 6, and both dynamic logistic state space model and the correction factor identified 7.
Static models may misclassify hospital performance and rankings. Dynamic strategies influence outlier detection and change hospital rankings over time. Regular model updates may better reflect current performance, supporting fairer hospital comparisons.
用于确定预期结果的预测模型很少更新(即静态模型),随着时间的推移,这可能会降低准确性并对医院绩效进行错误分类。动态模型纳入了随时间的变化,可能会提高医院比较中的准确性和公平性。本研究评估了与静态模型相比,动态更新是否会改变外科主动脉瓣置换患者的医院排名和异常值检测。
这项回顾性队列研究使用宾夕法尼亚州医疗保健成本控制委员会的索赔数据评估了53家医院的绩效。利用1999年至2006年的数据建立了一个使用临床和人口统计学变量的多变量逻辑回归模型,以预测术后30天死亡率,然后将其应用于2007年至2018年的测试数据,以比较4种策略:(1)具有固定参数的静态模型;(2)基于胸外科医师协会方法的年度校正因子;(3)用于年度重新校准的校准回归;(4)动态逻辑状态空间模型以持续更新模型系数。使用观察到的预期比率和评分来评估绩效。值越低表明结果优于预期。
训练样本包括14070名患者(平均年龄66.6岁;43.1%为女性);测试样本包括29127名患者(平均年龄67.4岁;39.1%为女性)。与校准回归(-3.04至2.85)、校正因子(-2.87至3.24)和动态逻辑状态空间模型(-2.57至3.03)相比,静态模型的评分变异性最大(范围为-6.97至1.38)。静态模型将15家医院标记为明显优于预期;在校正因子和动态逻辑状态空间模型下,只有3家(20.0%)保持了这一分类,在校准回归下有5家(33.3%)保持了这一分类。在静态模型下,没有医院被分类为明显差于预期,而校准回归识别出6家,动态逻辑状态空间模型和校正因子都识别出7家。
静态模型可能会对医院绩效和排名进行错误分类。动态策略会影响异常值检测并随时间改变医院排名。定期更新模型可能会更好地反映当前绩效,支持更公平的医院比较。