Mahmoud Abeer M, Mirza Imaduddin, Metwally Elsayed, Morsy Mohammed H, Scichilone Giorgia, Asada Monica C, Mostafa Amro, Bianco Francesco M, Ali Mohamed M, Masrur Mario A, Hassan Chandra, Layden Brian T
Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, Illinois, USA.
Department of Kinesiology and Nutrition, College of Applied Health Sciences.
JCI Insight. 2025 Jun 23;10(12). doi: 10.1172/jci.insight.191872.
BACKGROUNDObesity, a growing health concern, often leads to metabolic disturbances, systemic inflammation, and vascular dysfunction. Emerging evidence suggests that adipose tissue-derived extracellular vesicles (adiposomes) may propagate obesity-related complications. However, their lipid composition and effect on cardiometabolic state remain unclear.METHODSThis study examined the lipid composition of adiposomes in 122 participants (75 in obesity group, 47 in lean group) and its connection to cardiometabolic risk. Adiposomes were isolated via ultracentrifugation and characterized using nanoparticle tracking and comprehensive lipidomic analysis by mass spectrometry. Cardiometabolic assessments included anthropometry, body composition, glucose-insulin homeostasis, lipid profiles, inflammatory markers, and vascular function.RESULTSCompared with lean controls, individuals with obesity exhibited elevated adiposome release and shifts in lipid composition, including higher ceramides, free fatty acids, and acylcarnitines, along with reduced levels of phospholipids and sphingomyelins. These alterations strongly correlated with increased BMI, insulin resistance, systemic inflammation, and impaired vascular function. Pathway enrichment analyses highlight dysregulation in glycerophospholipid and sphingolipid metabolism, bile secretion, proinflammatory pathways, and vascular contractility. Machine-learning models utilizing adiposome lipid data accurately classified obesity and predicted cardiometabolic conditions, such as diabetes, hypertension, dyslipidemia, and liver steatosis, achieving accuracy above 85%.CONCLUSIONObesity profoundly remodels the adiposome lipid landscape, linking lipid changes to inflammation, metabolic dysfunction, and vascular impairment. These findings underscore adiposome lipids as biomarkers for obesity and related cardiometabolic disorders, supporting personalized interventions and offering therapeutic value in risk stratification and treatment.FUNDINGThis project was supported by NIH grants R01HL161386, R00HL140049, P30DK020595 (PI: AMM), R01DK104927, and P30DK020595 as well as by a VA Merit Award (1I01BX003382, PI: BTL).
背景
肥胖是一个日益严重的健康问题,常常导致代谢紊乱、全身炎症和血管功能障碍。新出现的证据表明,脂肪组织衍生的细胞外囊泡(脂肪体)可能会引发与肥胖相关的并发症。然而,它们的脂质组成及其对心脏代谢状态的影响仍不清楚。
方法
本研究检测了122名参与者(肥胖组75人,瘦组47人)脂肪体的脂质组成及其与心脏代谢风险的关联。通过超速离心分离脂肪体,并使用纳米颗粒跟踪和质谱综合脂质组学分析对其进行表征。心脏代谢评估包括人体测量、身体成分、葡萄糖 - 胰岛素稳态、血脂谱、炎症标志物和血管功能。
结果
与瘦对照组相比,肥胖个体的脂肪体释放增加,脂质组成发生变化,包括神经酰胺、游离脂肪酸和酰基肉碱水平升高,同时磷脂和鞘磷脂水平降低。这些改变与体重指数增加、胰岛素抵抗、全身炎症和血管功能受损密切相关。通路富集分析突出了甘油磷脂和鞘脂代谢、胆汁分泌、促炎通路和血管收缩的失调。利用脂肪体脂质数据的机器学习模型能够准确分类肥胖,并预测糖尿病、高血压、血脂异常和肝脂肪变性等心脏代谢状况,准确率超过85%。
结论
肥胖深刻重塑了脂肪体脂质格局,将脂质变化与炎症、代谢功能障碍和血管损伤联系起来。这些发现强调脂肪体脂质作为肥胖及相关心脏代谢疾病的生物标志物,支持个性化干预,并在风险分层和治疗中具有治疗价值。
资助
本项目由美国国立卫生研究院(NIH)的R01HL161386、R00HL140049、P30DK020595(项目负责人:AMM)、R01DK104927和P30DK020595资助,以及退伍军人事务部卓越奖(1I01BX003382,项目负责人:BTL)资助。