Wang Lingna, Hong Weihua, Fan Dage, Lin Jinyong, Liu Zeyang, Fan Min, Lin Xueliang, Lin Duo, Feng Shangyuan
Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350007, China.
Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices, Institute for Photonics Technology, Quanzhou Normal University, Quanzhou, 362000, China.
Nanoscale. 2025 Jul 10;17(27):16349-16360. doi: 10.1039/d5nr01405k.
Accurate identification of clinically malignant pleural effusions is critical for cancer diagnosis and subsequent treatment planning. Here, surface-enhanced Raman spectroscopy (SERS) data of pleural effusions and serum carcinoembryonic antigen (CEA) levels were integrated to develop an innovative mid-level data fusion method combined with machine learning algorithms to improve the accuracy of cancer detection. SERS spectra of pleural effusions from 15 lung cancer patients, 10 other cancer patients, and 28 non-cancer patients were first acquired using a handheld Raman spectrometer. The principal component analysis (PCA) scores from the SERS spectra were merged with the digitized serum CEA values to generate a data fusion array. Machine learning algorithms such as linear discriminant analysis (LDA), -nearest neighbor (KNN), and support vector machine (SVM) were applied to train the fused dataset using five-fold cross-validation. Notably, the fusion strategy achieved superior performance compared to the pure SERS spectral discrimination model, with the KNN algorithm demonstrating very high accuracy (>85%) in distinguishing the three clinical groups of lung cancer non-cancer, other cancers non-cancer, and lung cancer other cancers. These results highlight the synergistic diagnostic capability of combining molecular spectroscopic fingerprints with tumor biomarkers for pleural effusion analysis, thereby providing a new strategy for rapid and accurate clinical cancer discrimination liquid biopsy.
准确识别临床上的恶性胸腔积液对于癌症诊断和后续治疗计划至关重要。在此,整合了胸腔积液的表面增强拉曼光谱(SERS)数据和血清癌胚抗原(CEA)水平,以开发一种结合机器学习算法的创新中级数据融合方法,以提高癌症检测的准确性。首先使用手持式拉曼光谱仪获取了15例肺癌患者、10例其他癌症患者和28例非癌症患者的胸腔积液的SERS光谱。将SERS光谱的主成分分析(PCA)得分与数字化的血清CEA值合并,以生成数据融合阵列。应用线性判别分析(LDA)、K近邻(KNN)和支持向量机(SVM)等机器学习算法,使用五折交叉验证对融合数据集进行训练。值得注意的是,与纯SERS光谱判别模型相比,融合策略表现出卓越的性能,KNN算法在区分肺癌-非癌症、其他癌症-非癌症和肺癌-其他癌症这三个临床组时显示出非常高的准确性(>85%)。这些结果突出了将分子光谱指纹与肿瘤生物标志物相结合用于胸腔积液分析的协同诊断能力,从而为快速准确的临床癌症鉴别——液体活检提供了一种新策略。