Li Zhe, Li Zeyang, Lu Hao, Song Boyu, Zhao Xiya, Zhou Hanyang, Wang Lei, Zou Qingli, Yang Yusen, Wei Min
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, P. R. China.
ACS Appl Mater Interfaces. 2025 Jul 2;17(26):38112-38121. doi: 10.1021/acsami.5c07565. Epub 2025 Jun 23.
Tin oxide is widely recognized as a promising candidate for the electrochemical synthesis of formate from CO. However, challenges such as suboptimal performance and a limited understanding of the reaction mechanisms persist. In this study, we developed an integrated electrode by optimizing a hierarchical metal-metal oxide nanoarray via a combination of hydrothermal synthesis and electrodeposition. This design enables direct growth of the catalyst on the current collector, eliminating the need for polymer binders. The constructed metal-loading structure effectively regulates the electronic structure of Sn and facilitates the formation of Sn species, which thereby enhances the adsorption strength of *OCHO intermediate, significantly enhancing formate production. The resulting electrocatalyst, Bi-Sn(In)O, demonstrates a Faradaic efficiency (FE) of 83.66% for the reduction of CO to formate, with a maximum production rate of 768.12 μmol·h·cm and a current density of 54.45 mA·cm. In situ infrared characterization and theoretical calculations reveal that local charge redistribution and the presence of high-valence Sn improve the adsorption and stabilization of the crucial *OCHO intermediate, thereby lowering the energy barrier for HCOOH formation. Additionally, the integrated electrode design enables the exposure of more active sites, substantially increasing the electrochemical surface area and catalytic activity. This study offers valuable insights into the catalyst design for high-valence Sn in CO reduction.
氧化锡被广泛认为是一种由一氧化碳电化学合成甲酸盐的很有前景的候选材料。然而,诸如性能欠佳以及对反应机理了解有限等挑战依然存在。在本研究中,我们通过水热合成和电沉积相结合的方法优化了分级金属-金属氧化物纳米阵列,从而开发出一种集成电极。这种设计能够使催化剂在集电器上直接生长,无需聚合物粘合剂。构建的金属负载结构有效地调节了锡的电子结构,并促进了锡物种的形成,进而增强了OCHO中间体的吸附强度,显著提高了甲酸盐的产量。所得的电催化剂Bi-Sn(In)O在将一氧化碳还原为甲酸盐反应中的法拉第效率(FE)为83.66%,最大产率为768.12 μmol·h·cm,电流密度为54.45 mA·cm。原位红外表征和理论计算表明,局部电荷重新分布和高价锡的存在改善了关键OCHO中间体的吸附和稳定性,从而降低了甲酸形成的能垒。此外,集成电极设计能够暴露出更多活性位点,大幅增加了电化学表面积和催化活性。本研究为一氧化碳还原中高价锡的催化剂设计提供了有价值的见解。