Chen Yuxin, Choi Junyoung, Liang Fangkui, Tan Xinyi, Chen Yudi, Yang Jiahui, Hong Song, Zhang Xin, Robertson Alex W, Jung Yousung, Sun Zhenyu
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology Beijing 100029 P. R. China
Department of Chemical and Biological Engineering, Seoul National University 1 Kwanak-ro Seoul 08826 South Korea
Chem Sci. 2025 May 14;16(25):11574-11580. doi: 10.1039/d5sc01580d. eCollection 2025 Jun 25.
The practical realization of the electrocatalytic reduction of CO to formate is limited by the lack of suitable highly active and selective electrocatalysts, particularly candidates compatible with operation at high current densities. Herein, we report a dual-active site electrocatalyst consisting of In single atoms and In nanoparticles supported on N, S-codoped porous carbon (In-NSC/NPs), which enables a remarkable formate faradaic efficiency (FE) of 92% with a large absolute partial current density for formate of up to 1.1 A cm. By using membrane electrode assembly cells, a formate FE exceeding 90% and an energy conversion efficiency of over 44% are attainable within a wide cell voltage range of 2.4-3 V. The maximum formate generation rate reaches 10.5 mmol cm h at a cell voltage of 2.9 V. By coupling with anodic glycerol oxidation, the formate yield rate in a full electrolytic cell is significantly improved to 23.2 mmol cm h while using the same reaction conditions as the standard anodic oxygen evolution reaction. A combination of control experiments and characterization methods reveals that In nanoparticles facilitate the generation of the *OCHO and the subsequent hydrogenation step to generate formate while the In single atoms boost HO dissociation. The generated *H migrates to the surface of the In nanoparticles, increasing the proton concentration and promoting the hydrogenation reaction.
将CO电催化还原为甲酸盐的实际应用受到缺乏合适的高活性和选择性电催化剂的限制,特别是缺乏与高电流密度下运行兼容的候选材料。在此,我们报道了一种双活性位点电催化剂,它由负载在N、S共掺杂多孔碳(In-NSC/NPs)上的In单原子和In纳米颗粒组成,该催化剂能够实现高达92%的显著甲酸盐法拉第效率(FE),甲酸盐的绝对分电流密度高达1.1 A cm。通过使用膜电极组件电池,在2.4-3 V的宽电池电压范围内,甲酸盐FE超过90%,能量转换效率超过44%。在2.9 V的电池电压下,最大甲酸盐生成速率达到10.5 mmol cm h。通过与阳极甘油氧化耦合,在与标准阳极析氧反应相同的反应条件下,全电解池中的甲酸盐产率显著提高到23.2 mmol cm h。一系列对照实验和表征方法表明,In纳米颗粒促进了OCHO的生成以及随后生成甲酸盐的氢化步骤,而In单原子则促进了H₂O的解离。生成的H迁移到In纳米颗粒表面,增加了质子浓度并促进了氢化反应。