Matsuda Jin, Watanabe Hikaru, Arita Ryotaro
The University of Tokyo, Department of Applied Physics, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
The University of Tokyo, Department of Physics, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Phys Rev Lett. 2025 Jun 6;134(22):226703. doi: 10.1103/vgcs-bn8g.
Altermagnets exhibit nonrelativistic spin splitting due to the breaking of time-reversal symmetry and have been garnering significant attention as promising materials for spintronic applications. In contrast, conventional antiferromagnets without spin splitting seem to not have any symmetry breaking and have drawn less attention. However, we show that conventional antiferromagnets with a nonzero propagation vector (Q vector) bring about nontrivial symmetry breakings. The incompatibility between the Q vector and nonsymmorphic symmetry leads to macroscopic symmetry breaking without lifting spin degeneracy. Moreover, the hidden altermagnetic spin splitting in the electronic structure gives rise to various emergent responses. To examine our prediction, we perform first-principles calculations for MnS_{2} and investigate its multiferroic properties, such as nonlinear transport and optical activity. Our findings reveal unique properties in conventional antiferromagnets, providing another perspective for designing spintronic materials.
由于时间反演对称性的破缺,交变磁体表现出非相对论性自旋分裂,作为自旋电子学应用的有前途材料,它们一直备受关注。相比之下,没有自旋分裂的传统反铁磁体似乎没有任何对称性破缺,因此受到的关注较少。然而,我们表明,具有非零传播矢量(Q矢量)的传统反铁磁体会导致非平凡的对称性破缺。Q矢量与非简单对称性之间的不相容性导致宏观对称性破缺,而不会解除自旋简并。此外,电子结构中隐藏的交变磁自旋分裂会引发各种涌现响应。为了检验我们的预测,我们对MnS₂进行了第一性原理计算,并研究了其多铁性性质,如非线性输运和光学活性。我们的发现揭示了传统反铁磁体中的独特性质,为自旋电子材料的设计提供了另一个视角。