Chen Yao-Peng, Niu Yi-Lin, Zheng Zhao, Chen Xiang, Gao Yu-Chen, Yao Nan, Zhang Rui, Zhang Qiang
Beijing Key Laboratory of Complex Solid State Batteries & Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
Beijing Huairou Laboratory, Beijing, 101400, China.
Angew Chem Int Ed Engl. 2025 Aug 18;64(34):e202508152. doi: 10.1002/anie.202508152. Epub 2025 Jul 4.
High-voltage lithium (Li) metal batteries (LMBs) are promising next-generation high-energy-density rechargeable batteries. Siloxane electrolytes exhibit excellent performance in high-voltage LMBs. Herein, the mechanisms responsible for the Li metal compatibility and high-voltage resistance of siloxane electrolytes were probed by classical molecular dynamics (MD) simulations, first-principles calculations, and experimental characterizations. Siloxane electrolytes have been demonstrated to deliver anion-rich solvation structures, which are induced by weak Li ion (Li)-solvent interactions and strong Li-anion interactions. The silicon (Si)─oxygen (O) bond energy of siloxane is larger than that of carbon (C)─O of C-siloxane (replacing Si atoms in siloxane with C atoms) because the atomic radius of Si is larger than that of C, and the Pauli exclusion of Si is smaller than that of C. Additionally, ab initio molecular dynamics (AIMD) simulations revealed that the decomposition of siloxane produces substances containing Si─O fragments on Li metal surfaces, which is beneficial for interfacial stability. This work reveals the mechanism of interfacial stability and intrinsic stability of siloxane electrolytes, providing a theoretical basis for the practical application of siloxane electrolytes in high-voltage LMBs.
高压锂金属电池是很有前景的下一代高能量密度可充电电池。硅氧烷电解质在高压锂金属电池中表现出优异的性能。在此,通过经典分子动力学模拟、第一性原理计算和实验表征,探究了硅氧烷电解质与锂金属相容性和耐高压性的相关机制。已证明硅氧烷电解质能够形成富含阴离子的溶剂化结构,这是由锂离子与溶剂之间的弱相互作用以及锂与阴离子之间的强相互作用所诱导的。硅氧烷的硅(Si)─氧(O)键能大于碳硅氧烷(用碳原子取代硅氧烷中的硅原子)的碳(C)─氧(O)键能,这是因为硅的原子半径大于碳,且硅的泡利不相容性小于碳。此外,从头算分子动力学模拟表明,硅氧烷的分解在锂金属表面产生含有Si─O片段的物质,这有利于界面稳定性。这项工作揭示了硅氧烷电解质的界面稳定性和本征稳定性机制,为硅氧烷电解质在高压锂金属电池中的实际应用提供了理论依据。